16.6 Sammansatta linjära avbildningar

SamverkanLinalgLIU

Version från den 25 mars 2010 kl. 07.25; Tek (Diskussion | bidrag)
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till: navigering, sök
       16.1          16.2          16.3          16.4          16.5          16.6          16.7          16.8          16.9          16.10          16.11      


Läs textavsnitt 16.6 Sammansatta linjära avbildningar


Övningar

17.18. Låt \displaystyle \underline{\boldsymbol{e}} vara en bas för \displaystyle V, där dim \displaystyle V=2. Antag att \displaystyle F:V\rightarrow V är en linjär avbildning som uppfyller

\displaystyle \left\{\begin{array}{lcr}F(\boldsymbol{e}_1)&=&\frac{1}{\sqrt2}(\boldsymbol{e}_1+\boldsymbol{e}_2)\\ F(\boldsymbol{e}_2)&=&\frac{1}{\sqrt2}(-\boldsymbol{e}_1+\boldsymbol{e}_2)\end{array}\right.

Bestäm matrisen för \displaystyle F^2 i basen \displaystyle \underline{\boldsymbol{e}}.


17.19. Bestäm matrisen till den linjära avbildningen \displaystyle {\color{Blue}F}:{\bf R^3}\rightarrow{\bf R}^3 som i basen \displaystyle \underline{\boldsymbol{e}} ges av

\displaystyle F(x_1,x_2,x_3)=(5x_1+2x_2+4x_3,2x_1+x_2+x_3,4x_1+x_2+6x_3)
  1. Visa att \displaystyle F är linjär.
  2. Bestäm \displaystyle F^{-1}:s matris i basen \displaystyle \underline{\boldsymbol{e}}


Reflektionsuppgifter

Hur påverkas matrisen för en sammansatt avbildning om man kastar om ordningsföljden mellan avbildningarna?