16.11 Rotationer

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 21: Rad 21:
[[Bild:RotationFilm.png|| |350px]]
[[Bild:RotationFilm.png|| |350px]]
-
[http://webstaff.itn.liu.se/%7Egeoba/TNA002/webkurs/RotationFilm.jnlp Visualisera uppgift 17.38]
+
[http://webstaff.itn.liu.se/%7Egeoba/TNA002/webkurs/RotationFilm.jnlp Starta filmvisningen]

Versionen från 9 mars 2011 kl. 12.31

       16.1          16.2          16.3          16.4          16.5          16.6          16.7          16.8          16.9          16.10          16.11      


Läs textavsnitt 16.11 Rotationer

För att se en filmvisning om rotation så klicka på länken

Starta filmvisningen



Övningar


17.37 Givet en höger ON-bas i rummet. Följande matriser definierar linjära avbildningar i rummet. Beskriv geometriskt vad dessa gör.

\displaystyle

A_1=\left(\begin{array}{rrr} 1&0 & 0\\ 0& 0& 0\\ 0& 0& 1\end{array}\right)\qquad A_2=\left(\begin{array}{rrr} 1& 0& 0\\ 0& 3& 0\\ 0& 0& 1\end{array}\right)\qquad A_3=\left(\begin{array}{rrr} 1& 0& 0\\ 0& \cos\theta& -\sin\theta\\ 0& \sin\theta& \cos\theta\end{array}\right)


17.38 Låt \displaystyle \underline{\boldsymbol{e}} vara en höger ON-bas i rummet och låt en rotationsaxel \displaystyle L vara parallell med vektorn \displaystyle 2\boldsymbol{e}_1+2\boldsymbol{e}_2-\boldsymbol{e}_3.

  1. Bestäm \displaystyle F:s matris \displaystyle A_{\boldsymbol{e}} om \displaystyle F är en rotation \displaystyle \pi/2 i positiv led runt \displaystyle L.
  2. Bestäm \displaystyle G:s matris \displaystyle B_{\boldsymbol{e}} om \displaystyle G är en rotation \displaystyle 3\pi/2 i positiv led runt \displaystyle L.
  3. Bestäm \displaystyle A^4_{\boldsymbol{e}}.

För att visualisera uppgift 17.38 så klicka på länken

Visualisera uppgift 17.38



17.39. Låt \displaystyle \underline{\boldsymbol{e}} vara en höger ON-bas i rummet och \displaystyle F rotation \displaystyle 2\pi/3 i positiv led runt \displaystyle \boldsymbol{e}_1+\boldsymbol{e}_2+\boldsymbol{e}_3. Beräkna avbildningens matris i basen \displaystyle \underline{\boldsymbol{e}}.


Reflektionsuppgifter

1. Beskriv hur en rotationsmatris är uppbyggd.

2. Hur åstadkommer du rotation moturs respektive medurs?