16.11 Rotationer
SamverkanLinalgLIU
(Lagt in navigeringstabbar) |
|||
Rad 1: | Rad 1: | ||
+ | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
+ | | style="border-bottom:1px solid #797979" width="5px" | | ||
+ | {{Mall:Ej vald flik|[[16.1 Definition av linjär avbildning|16.1]]}} | ||
+ | {{Mall:Ej vald flik|[[16.2 Matrisframställning|16.2]]}} | ||
+ | {{Mall:Ej vald flik|[[16.3 Projektion och spegling|16.3]]}} | ||
+ | {{Mall:Ej vald flik|[[16.4 Plan rotation|16.4]]}} | ||
+ | {{Mall:Ej vald flik|[[16.5 Rotation i rummet|16.5]]}} | ||
+ | {{Mall:Ej vald flik|[[16.6 Sammansatta linjära avbildningar|16.6]]}} | ||
+ | {{Mall:Ej vald flik|[[16.7 Nollrum, Värderum och dimensionssatsen|16.7]]}} | ||
+ | {{Mall:Ej vald flik|[[16.8 Basbyte|16.8]]}} | ||
+ | {{Mall:Ej vald flik|[[16.9 Linjära avbildningar och basbyte|16.9]]}} | ||
+ | {{Mall:Ej vald flik|[[16.10 Projektioner och speglingar med basbyte|16.10]]}} | ||
+ | {{Mall:Vald flik|[[16.11 Rotationer|16.11]]}} | ||
+ | | style="border-bottom:1px solid #797979" width="100%"| | ||
+ | |} | ||
+ | |||
+ | |||
Läs textavsnitt [http://wiki.math.se/wikis/samverkan/linalg-LIU/img_auth.php/e/ea/Kap16_11.pdf 16.11 Rotationer] | Läs textavsnitt [http://wiki.math.se/wikis/samverkan/linalg-LIU/img_auth.php/e/ea/Kap16_11.pdf 16.11 Rotationer] | ||
+ | |||
'''Övningar''' | '''Övningar''' | ||
Rad 9: | Rad 27: | ||
A_2=\left(\begin{array}{rrr} 1& 0& 0\\ 0& 3& 0\\ 0& 0& 1\end{array}\right)\qquad | A_2=\left(\begin{array}{rrr} 1& 0& 0\\ 0& 3& 0\\ 0& 0& 1\end{array}\right)\qquad | ||
A_3=\left(\begin{array}{rrr} 1& 0& 0\\ 0& \cos\theta& -\sin\theta\\ 0& \sin\theta& \cos\theta\end{array}\right) | A_3=\left(\begin{array}{rrr} 1& 0& 0\\ 0& \cos\theta& -\sin\theta\\ 0& \sin\theta& \cos\theta\end{array}\right) | ||
- | </math></center> | + | </math></center><!-- |
- | {{#NAVCONTENT: | + | -->{{#NAVCONTENT: |
Svar|Svar till övning 17.37| | Svar|Svar till övning 17.37| | ||
Tips och lösning|Tips och lösning till övning 17.37}} | Tips och lösning|Tips och lösning till övning 17.37}} | ||
- | |||
Rad 21: | Rad 38: | ||
# Bestäm <math>F</math>:s matris <math>A_{\boldsymbol{e}}</math> om <math>F</math> är en rotation <math>\pi/2</math> i positiv led runt <math>L</math>. | # Bestäm <math>F</math>:s matris <math>A_{\boldsymbol{e}}</math> om <math>F</math> är en rotation <math>\pi/2</math> i positiv led runt <math>L</math>. | ||
# Bestäm <math>G</math>:s matris <math>B_{\boldsymbol{e}}</math> om <math>G</math> är en rotation <math>3\pi/2</math> i positiv led runt <math>L</math>. | # Bestäm <math>G</math>:s matris <math>B_{\boldsymbol{e}}</math> om <math>G</math> är en rotation <math>3\pi/2</math> i positiv led runt <math>L</math>. | ||
- | # Bestäm <math>A^4_{\boldsymbol{e}}.</math> | + | # Bestäm <math>A^4_{\boldsymbol{e}}.</math><!-- |
- | {{#NAVCONTENT: | + | -->{{#NAVCONTENT: |
Svar|Svar till övning 17.38| | Svar|Svar till övning 17.38| | ||
Tips och lösning|Tips och lösning till övning 17.38}} | Tips och lösning|Tips och lösning till övning 17.38}} | ||
- | |||
17.39. Låt <math>\underline{\boldsymbol{e}}</math> vara en höger ON-bas i rummet och <math>F</math> rotation <math>2\pi/3</math> i positiv led runt | 17.39. Låt <math>\underline{\boldsymbol{e}}</math> vara en höger ON-bas i rummet och <math>F</math> rotation <math>2\pi/3</math> i positiv led runt | ||
<math>\boldsymbol{e}_1+\boldsymbol{e}_2+\boldsymbol{e}_3</math>. | <math>\boldsymbol{e}_1+\boldsymbol{e}_2+\boldsymbol{e}_3</math>. | ||
- | Beräkna avbildningens matris i basen <math>\underline{\boldsymbol{e}}</math>. | + | Beräkna avbildningens matris i basen <math>\underline{\boldsymbol{e}}</math>.<!-- |
- | {{#NAVCONTENT: | + | -->{{#NAVCONTENT: |
Svar|Svar till övning 17.39| | Svar|Svar till övning 17.39| | ||
Tips och lösning|Tips och lösning till övning 17.39}} | Tips och lösning|Tips och lösning till övning 17.39}} | ||
+ | |||
'''Reflektionsuppgifter''' | '''Reflektionsuppgifter''' |
Versionen från 25 mars 2010 kl. 07.47
16.1 | 16.2 | 16.3 | 16.4 | 16.5 | 16.6 | 16.7 | 16.8 | 16.9 | 16.10 | 16.11 |
Läs textavsnitt 16.11 Rotationer
Övningar
17.37 Givet en höger ON-bas i rummet. Följande matriser definierar linjära avbildningar i rummet. Beskriv geometriskt vad dessa gör.
A_1=\left(\begin{array}{rrr} 1&0 & 0\\ 0& 0& 0\\ 0& 0& 1\end{array}\right)\qquad A_2=\left(\begin{array}{rrr} 1& 0& 0\\ 0& 3& 0\\ 0& 0& 1\end{array}\right)\qquad A_3=\left(\begin{array}{rrr} 1& 0& 0\\ 0& \cos\theta& -\sin\theta\\ 0& \sin\theta& \cos\theta\end{array}\right)
17.38 Låt \displaystyle \underline{\boldsymbol{e}} vara en höger ON-bas i rummet och låt en rotationsaxel \displaystyle L vara parallell med vektorn \displaystyle 2\boldsymbol{e}_1+2\boldsymbol{e}_2-\boldsymbol{e}_3.
- Bestäm \displaystyle F:s matris \displaystyle A_{\boldsymbol{e}} om \displaystyle F är en rotation \displaystyle \pi/2 i positiv led runt \displaystyle L.
- Bestäm \displaystyle G:s matris \displaystyle B_{\boldsymbol{e}} om \displaystyle G är en rotation \displaystyle 3\pi/2 i positiv led runt \displaystyle L.
- Bestäm \displaystyle A^4_{\boldsymbol{e}}.
17.39. Låt \displaystyle \underline{\boldsymbol{e}} vara en höger ON-bas i rummet och \displaystyle F rotation \displaystyle 2\pi/3 i positiv led runt
\displaystyle \boldsymbol{e}_1+\boldsymbol{e}_2+\boldsymbol{e}_3.
Beräkna avbildningens matris i basen \displaystyle \underline{\boldsymbol{e}}.
Reflektionsuppgifter
1. Beskriv hur en rotationsmatris är uppbyggd.
2. Hur åstadkommer du rotation moturs respektive medurs?