4.3 Tillämpningar

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Nuvarande version (12 september 2011 kl. 14.35) (redigera) (ogör)
 
(3 mellanliggande versioner visas inte.)
Rad 8: Rad 8:
<div class="ovning">
<div class="ovning">
-
{\color{Blue}'''''Läs textavsnitt'''''} [http://wiki.math.se/wikis/samverkan/linalg-LIU/img_auth.php/1/19/Kap4_3.pdf 4.3 Tillämpningar].
+
'''''Läs textavsnitt''''' [http://wiki.math.se/wikis/samverkan/linalg-LIU/img_auth.php/1/19/Kap4_3.pdf 4.3 Tillämpningar].
</div>
</div>
-
<div class="ovning">
+
 
-
''Klicka på bilden för att starta visualiseringen''.
+
'''''Innan du börjar arbeta med detta moment så kan Du utföra beräkning av vektorprodukt genom att klicka på bilden.'''''
 +
 
<imagemap>
<imagemap>
-
Bild:VectorProduct.png|300px|alt=Alt text
+
Bild:VectorProduct.png|450px|alt=Alt text
default [http://webcourses.itn.liu.se/webkurs/VectorProduct.jnlp Du kan här utföra beräkning av vektorprodukt]
default [http://webcourses.itn.liu.se/webkurs/VectorProduct.jnlp Du kan här utföra beräkning av vektorprodukt]
</imagemap>
</imagemap>
-
</div>
 
-
'''''Du har nu läst tillämpningar på vektorprodukt och här kommer några övningar som testar om du har tagit till dig stoffet.'''''
 
-
{\color{Blue}hej}
 
__TOC__
__TOC__

Nuvarande version

       4.1          4.2          4.3      

Läs textavsnitt 4.3 Tillämpningar.


Innan du börjar arbeta med detta moment så kan Du utföra beräkning av vektorprodukt genom att klicka på bilden.

alt=Alt textBildinformation


Innehåll

Övning 5.5

Bestäm arean av den triangel som har hörn i \displaystyle (1,1,1) , \displaystyle (1,2,1) och \displaystyle (3,2,1).



Övning 5.6

Bestäm arean för en parallellogram som har hörnpunkterna \displaystyle (1,3,2) , \displaystyle (2,-1,1) , \displaystyle (-1,2,3) och \displaystyle (0,-2,2) .


Övning 5.7

Bestäm arean av en parallellogram som har diagonalvektorerna \displaystyle \boldsymbol{v} =\begin{pmatrix} 2 \\ -5 \\ -3\end{pmatrix} och \displaystyle \boldsymbol{w} = \begin{pmatrix} 4\\ 3\\ -1\end{pmatrix}.



Övning 5.8

Bestäm volymen av den parallellepiped som spänns upp av vektorerna \displaystyle \begin{pmatrix} 3 \\ 1 \\ 7\end{pmatrix},

\displaystyle \begin{pmatrix} 2 \\ -3 \\ 5\end{pmatrix} och \displaystyle \begin{pmatrix} 9 \\ 0 \\ 1\end{pmatrix}.


Övning 5.9

Vilka av följande uppsättningar av vektorer är linjärt beroende?

\displaystyle

{\rm a)}\ \begin{pmatrix} 1 \\ 0 \\ 3\end{pmatrix}. \begin{pmatrix} 6 \\ 1 \\ 5\end{pmatrix}. \begin{pmatrix} 8 \\ 1 \\ 11\end{pmatrix} \qquad {\rm b)}\ \begin{pmatrix} 1 \\ 1 \\ 1\end{pmatrix}. \begin{pmatrix} 6 \\ 7 \\ 0\end{pmatrix}. \begin{pmatrix} 1 \\ 2 \\ 3\end{pmatrix}.


Övning 5.10

För vilka \displaystyle a är vektorerna \displaystyle \begin{pmatrix} a \\ 1 \\ 1\end{pmatrix}, \displaystyle \begin{pmatrix} 1 \\ a \\ 2\end{pmatrix} och \displaystyle \begin{pmatrix} 1 \\ 1 \\ a+1\end{pmatrix} linjärt beroende?


Övning 5.11

För vilka \displaystyle t ligger punkterna \displaystyle (t,1,2), \displaystyle (1,t,3), \displaystyle (1,1,1) och \displaystyle (0,1,1) i ett plan?


Övning 5.12

Ange ett värde på talet \displaystyle a så att vektorekvationen

\displaystyle \begin{pmatrix} 1 \\ 2 \\ 3\end{pmatrix}

\times \begin{pmatrix} x\\ y \\ z\end{pmatrix} =\begin{pmatrix} 1 \\ a \\ 3\end{pmatrix}

blir lösbar.


Övning 5.13

Antag att \displaystyle \boldsymbol{u} = \begin{pmatrix} 1 \\ -1 \\ 2\end{pmatrix} och \displaystyle \boldsymbol{v} =\begin{pmatrix} -k \\ 1 \\ k\end{pmatrix}. Lös vektorekvationen \displaystyle \boldsymbol{u} \times \boldsymbol{x} = \boldsymbol{v} för alla reella tal \displaystyle k , för vilka ekvationen är lösbar.


Övning 5.14

Låt \displaystyle \boldsymbol{u} = \begin{pmatrix} 1 \\ 1 \\ 2\end{pmatrix} och \displaystyle \boldsymbol{v} = \begin{pmatrix} 2 \\ 1 \\ 1\end{pmatrix}. Bestäm alla lösningar \displaystyle \boldsymbol{x} till ekvationssystemet

\displaystyle

\left\{\begin{array}{rcr} \boldsymbol{u} \cdot ( \boldsymbol{x} \times \boldsymbol{v} )&=&0\\ \boldsymbol{u} \cdot \boldsymbol{x} &=&0 \end{array}\right.