10.3 Optimering med bivillkor
SamverkanFlervariabelanalysLIU
10.1 | 10.2 | 10.3 |
Innehåll |
Övning 11.3.1
Bestäm det största och det minsta värde som funktionen \displaystyle f antar under bivillkoret \displaystyle g(x,y)=0.
a) \displaystyle f(x,y)=x^{2}+y^{2} och \displaystyle g(x,y)=x+2y-5
b) \displaystyle f(x,y)=x^{2}y och \displaystyle g(x,y)=x^{2}+y^{2}-4
c) \displaystyle f(x,y)=x^{2}+y och \displaystyle g(x,y)=x^{2}-y^{3}
Övning 11.3.3
Bestäm en låda med volym 32 v.e. där sidoytornas area är så liten som möjligt då lådan saknar lock.
Övning 11.3.5
Bestäm den största volym ett rätblock kan ha som är inskrivet i ellipsoiden
\displaystyle \frac{x^2}{a^2}+ \frac{y^2}{b^2}+ \frac{z^2}{c^2}=1
Övning 11.3.6
Ett tält utan botten har två likbenta trianglar som gavlar och med två rektangulära sidor. Bestäm höjd, bredd och längd i det tält som har en given volym \displaystyle V_{0} med minimal tygåtgång.