Testsida2
Förberedande kurs i matematik
Övning 3.1.1
Låt 1
2
4
3
4
a) | ![]() | b) | ![]() | c) | ![]() | d) | ![]() |
Övning 3.1.2
Bestäm om följande funktioner är injektiva respektive surjektiva.
a) | ![]() ![]() ![]() | |
b) | ![]() ![]() ![]()
| |
c) | ![]() ![]() ![]() ![]() | |
d) | | |
e) |
Övning 3.1.3
Låt x
x
0
x
x
0
x
a) | \displaystyle f | b) | \displaystyle g | c) | \displaystyle h(x) = f(g(x)). | d) | \displaystyle \displaystyle B \setminus A |
f: \begin{list}{}{} \item Definitionsmängd: \displaystyle \mathbb{R} \item Målmängd: \displaystyle \{x\in \mathbb{R}\mid x\geq0\} \item Värdemängd: \displaystyle \{x\in \mathbb{R}\mid x\geq0\} \item Surjektivitet: Ja, mål- och värdemängd är lika. \item Injektivitet: Nej, till exempel är \displaystyle f(-1)=f(1)=1. \end{list} g: \begin{list}{}{} \item Definitionsmängd: \displaystyle \{x\in \mathbb{R}\mid x\geq0\} \item Målmängd: \displaystyle \mathbb{R} \item Värdemängd: \displaystyle \{x\in \mathbb{R}\mid x\leq0\} \item Surjektivitet: Nej, inga positiva tal antas. \item Injektivitet: Ja, eftersom funktionen är strikt avtagande. \end{list} h: \begin{list}{}{} \item Definitionsmängd: \displaystyle \{x\in \mathbb{R}\mid x\geq0\} \item Målmängd: \displaystyle \{x\in \mathbb{R}\mid x\geq0\} \item Värdemängd: \displaystyle \{x\in \mathbb{R}\mid x\geq0\} \item Surjektivitet: Ja, eftersom mål- och värdemängd är lika. \item Injektivitet: Vi har \displaystyle h(x)=f(g(x))=(-\sqrt{x})^2 = x så den är injektiv. \end{list} Notera att \displaystyle h är bijektiv trots att varken \displaystyle f eller \displaystyle g är det.