Studieplan
Förberedande kurs i matematik
Obs!
Anledningen till att vi har upprättat en studieplan är för att många som börjar på högskolan inte har erfarenhet av studieplanering. Även om du väljer att inte följa denna planering rekommenderar vi att du gör en egen för att få ut så mycket som möjligt av kursen och undvika stressiga perioder.
Planeringen är avsedd för dig som läser på 100% men kan modifieras så att den även passar dig som läser på 50% eller 25%.
Lycka till!
Innehåll |
Kapitel 1 Tal
Här är det rimligt att lägga ner 4 heldagar (8 timmar/dag).
Lärandemål till kapitel 1
- Du ska veta vad heltalen, de naturliga talen, de rationella talen, de reella talen och de komplexa talen är.
- Du ska veta vad ett primtal är och hur man använder primtalsfaktorisering i problemlösning. Ett exempel på ett problem där man använder primtalsfaktorisering är att hitta alla delare till ett tal.
- Du ska behärska moduloräkning och kunna ge exempel på var man använder moduloräkning. Klockan är ett typiskt sådant exempel.
- Du ska veta hur man representerar tal i olika baser. Det kommer du speciellt att behöva ifall du väljer inlämningsuppgift 5.1 med specialisering "Decimalutvecklingar och talrepresentation".
- Du ska behärska kvadreringsreglerna och konjugatregeln.
Dag 1: Titta på inspelningen av Lektion 1. Läs avsnitt 1.1-1.4 och gör alla uppgifter på varje avsnitt.
Dag 2: Läs avsnitt 1.5-1.6 och gör alla uppgifter på varje avsnitt. Titta på inspelningen av Lektion 1 igen, du kanske inte förstod allt första gången. Gör Grund- och Slutprov 1.1-1.4.
Dag 3: Titta på inspelningen av Lektion 2. Läs avsnitt 1.7-1.8 och gör alla uppgifter på varje avsnitt.
Dag 4: Läs avsnitt 1.9 och gör uppgifterna. Titta på inspelningen av Lektion 2 igen. Gör Grund- och Slutprov 1.5-1.9.
Kapitel 2 Algebra, Kombinatorik och logik
Även här är det rimligt att lägga ner 4 heldagar (8 timmar/dag).
Lärandemål till kapitel 2
- Du ska veta vad ett polynom är, vad som är polynomets grad och polynomets koefficienter.
- Du ska kunna addera, subtrahera, multiplicera och dividera polynom.
- Du ska veta hur man löser första- och andragradsekvationer men även vissa polynomekvationer med högre grad, exempelvis \displaystyle x^3+x^2+x=0 genom att använda dig av faktorsatsen.
- Du ska veta vad en permutation och en kombination är, och skillnaden mellan dessa. Du ska även förstå och kunna tillämpa binomialsatsen. Det kommer du speciellt att behöva ifall du väljer inlämningsuppgift 5.1 med specialisering "Kombinatorik".
- Du ska veta skillnaden mellan likhetstecknet, implikationspilen och ekvivalenspilen, och börja använda dig av dem när du skriver en matematisk text. Du ska känna igen de matematiska symbolerna för eller och och och deras innebörd.
Dag 5: Titta på inspelningen av Lektion 3. Läs avsnitt 2.1-2.2 och gör uppgifterna 2.1.1-2.2.1 (totalt 4 uppgifter).
Dag 6: Gör uppgifterna 2.2.2-2.2.6 (totalt 5 uppgifter), läs genom avsnitt 2.1-2.2 igen om det behövs. Titta på inspelningen av Lektion 3 igen. Gör grundprov 2.1-2.2.
Dag 7: Titta på inspelningen av Lektion 4. Läs genom avsnitt 2.3 och gör alla uppgifter (totalt 7 uppgifter). Om du får tid över, titta gärna på inlämningsuppgiften.
Dag 8: Läs avsnitt 2.4 och gör alla uppgifter (1 uppgift). Titta på inspelningen av Lektion 4 igen. Gör grundprov 2.3-2.4 och slutprov 2.1-2.4. Gör inlämningsuppgiften och försök att använda dig av det som står i avsnitt 2.4 när du skriver lösningen.
Kapitel 3 Funktionslära
Här är det tänkt att lägga ner 8 heldagar (8 timmar/dag).
Lärandemål till kap 3
- Du ska kunna definitionen av en funktion. Du ska även kunna definitionen av definitionsmängd, målmängd och värdemängd samt bestämma dessa för en given funktion.
- Du ska kunna rita grafen till en given funktion i ett intervall och även dra slutsatser om hur funktionen beter sig utanför intervallet.
- Du ska förstå begreppen injektiv, surjektiv och bijektiv samt kunna bestämma om en given funktion är injektiv, surjektiv eller bijektiv.
- Du ska kunna ge exempel på en invers och dess funktion samt ge en geometrisk tolkning.
- Du ska känna till de elementära funktionerna. Dessa är polynomfunktioner, rationella funktioner, exponentialfunktioner, logaritmfunktioner och trigonometriska funktioner.
- Du ska veta hur man löser olikheter med och utan absolutbelopp både algebraiskt och grafiskt.
- Du ska känna till vinkelmåtten grader och radianer och sambandet mellan dem.
- Du ska veta definitionen av cosinus, sinus och tangens samt bestämma dessa för standardvinklar, exempelvis genom att rita hjälptrianglar.
- Du ska kunna använda enhetscirkeln för att lösa olika problem, exempelvis när du löser trigonometriska ekvationer.
Dag 9: Titta på inspelningen av Lektion 5. Läs avsnitt 3.1-3.2 och gör alla uppgifter på varje avsnitt (totalt 3 uppgifter). Om du är intresserad av att fördjupa dina kunskaper kan du läsa Kapitel 0 och kapitel 1 i Analys i en variabel skriven av Arne Persson och Lars-Christer Böiers. Denna bok används första terminen som kurslitteratur på Stockholms universitet och KTH.
Dag 10: Läs avsnitt 3.3 och gör alla uppgifter (totalt 3 uppgifter).
Dag 11: Titta på inspelningen av Lektion 6. Läs avsnitt 3.4 och gör alla uppgifter (1 uppgift).
Dag 12: Titta på inspelningen av Lektion 5 igen. Gör grundprov 3.1-3.4.
Dag 13: Läs avsnitt 3.5 och gör alla uppgifter (totalt 9 uppgifter).
Dag 14: Titta på inspelningen av Lektion 6 igen. Gör grundprov 3.5 och slutprov 3.1-3.5.
Dag 15: Här får du chansen att göra klart Dag 14. Gör inlämningsuppgifterna.
Dag 16: Gör klart kapitel 3. Om du får tid över,läs genom specialiseringstexterna och välj sedan en av dem att arbeta med.
Kapitel 4 Derivator och integraler
Här är det tänkt att lägga ner 5 heldagar (8 timmar/dag).
Lärandemål till kapitel 4
- Du ska kunna tangentens definition och från den gå vidare till derivatans definition.
- Du ska kunna derivatans definition och använda den för att härleda derivatan för polynomfunktioner.
- Du ska veta hur man deriverar elementära funktioner (se lärandemål kap 3, punkt 5) samt reglerna för hur man deriverar en summa, kvot, produkt och sammansättning av funktioner.
- Du ska veta hur man hittar maximum och minimum av en funktion med hjälp av derivata och hur man utnyttjar detta i grafritning.
- Du ska kunna tillämpa och tolka derivata.
- Du ska veta definitionen av under- och översummor och hur det övergår till begreppet integral.
- Du ska känna till sambandet mellan derivata och primitiv funktion och hur den senare används för att bestämma integralen av en funktion.
- Du ska kunna bestämma en primitiv funktion till några enkla funktioner (de som står i kompendiet).
- Du ska kunna beräkna en integral över ett givet intervall.
- Du ska kunna tillämpa och tolka integraler.
Dag 17: Titta på inspelningen av Lektion 7. Läs avsnitt 4.1-4.2 och gör alla uppgifter på varje avsnitt (totalt 2 uppgifter). Om du är intresserad av att fördjupa dina kunskaper kan du läsa Kapitel 3 i Analys i en variabel skriven av Arne Persson och Lars-Christer Böiers.
Dag 18: Titta på inspelningen av Lektion 7 igen. Gör grundprov 4.1-4.2. Titta på inspelningen av Lektion 8. Läs avsnitt 4.3 och gör alla uppgifter (totalt 2 uppgifter).
Dag 19: Gör klart Dag 18. Titta på inspelningen av lektion 8 igen. Gör grundprov 4.3 och slutprov 4.1-4.3.
Dag 20: Gör klart Dag 19. Börja med inlämningsuppgifterna.
Dag 21: Här får du chansen att göra klart Dag 20.
Specialiseringsdelen
Lärandemål för specialiseringen
Att formulera sig matematiskt skiljer sig mycket från andra sammanhang, vilket man ofta saknar träning av från gymnasiet. I specialiseringarna har ni arbetat med ämnen som oftast inte berörs på gymnasiet. Detta är för att få träning i att läsa och förstå, samt skriva en matematisk text och samtidigt få en inblick i vad en matematiker arbetar med.
Dag 22: Läs specialiseringstexten du har valt och gör uppgifterna.
Dag 23: Jobba vidare på specialiseringstexten.
Dag 24: Jobba vidare på specialiseringstexten.
Dag 25: Lämna in uppgifterna, glöm inte att ange vilka tider du kan ta emot examinationssamtalet från mentorerna.