Testsida2

Förberedande kurs i matematik

Version från den 12 juni 2012 kl. 11.55; Sass (Diskussion | bidrag)
Hoppa till: navigering, sök

Övning 3.1.1

Låt \displaystyle A=\{1,2,4\} och \displaystyle B=\{3,4\}. Bestäm

a) \displaystyle \displaystyle A\cup B b) \displaystyle \displaystyle A\cap B c) \displaystyle \displaystyle A\setminus B d) \displaystyle \displaystyle B \setminus A


Övning 3.1.2

Bestäm om följande funktioner är injektiva respektive surjektiva.

a) \displaystyle f:\mathbb{R} \rightarrow \mathbb{R} så att \displaystyle f(x)= x^2.
b) \displaystyle g:\mathbb{R}_+\rightarrow \mathbb{R} så att \displaystyle g(x)= -x-3.

\displaystyle \mathbb{R}_+ definieras som \displaystyle \mathbb{R}_+ = \{x\in \mathbb{R}\mid x>0\}.

c) \displaystyle h:\mathbb{R}_+\rightarrow \mathbb{R} så att \displaystyle h(x) = -\sqrt{x}.
d) \displaystyle r definierad genom \displaystyle r(x) = f(g(x)).
e) \displaystyle s definierad genom \displaystyle s(x) = f(h(x)).

a)

b) \begin{list}{}{}

\end{list} c) \begin{list}{}{}

\end{list} d) \begin{list}{}{}

\end{list} e) \begin{list}{}{} \item Definitionsmängd: \displaystyle \mathbb{R}_+ eftersom den inre funktionen har det. \item Målmängd: \displaystyle \mathbb{R} eftersom den yttre funktionen har det. \item Värdemängd: Vi har \displaystyle s(x) = f(h(x)) = (-\sqrt{x})^2 = |x| = x. Vi kan ta bort absolutbeloppet eftersom vi bara tittar på positiva \displaystyle x. Värdemängden är alltså \displaystyle \mathbb{R}_+. \item Surjektivitet: Nej, Till exempel \displaystyle 0 antas inte. \item Injektivitet: Om vi antar att \displaystyle s(x_1)=s(x_2) så betyder det att \displaystyle x_1=x_2 och alltså är den injektiv. \end{list}