Testsida2

Förberedande kurs i matematik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 233: Rad 233:
<div class="ovning">
<div class="ovning">
Du är direktör för en loppcirkus och skall för årets uppvisning välja ut 7 stycken av dina 12 loppor. Du behöver 2 jonglörer, 4 clowner och 1 levande kanonkula. 6 av dina loppor kan vara antingen jonglör eller kanonkula, 7 st. kan vara clowner, och mästerloppan kan uppträda som allt. På hur många olika sätt kan du välja en uppsättning av loppor för uppvisningen?
Du är direktör för en loppcirkus och skall för årets uppvisning välja ut 7 stycken av dina 12 loppor. Du behöver 2 jonglörer, 4 clowner och 1 levande kanonkula. 6 av dina loppor kan vara antingen jonglör eller kanonkula, 7 st. kan vara clowner, och mästerloppan kan uppträda som allt. På hur många olika sätt kan du välja en uppsättning av loppor för uppvisningen?
-
</div>{{#NAVCONTENT:Lösning | Lösning 2.3.1}}
+
</div>{{#NAVCONTENT:Svar | Svar 2.3.1 | Lösning | Lösning 2.3.1}}
===Övning 3.1.1===
===Övning 3.1.1===

Versionen från 27 juni 2012 kl. 13.25

Innehåll

Övning 1.2.1

Beräkna

a) \displaystyle \displaystyle 4^{3/2} b) \displaystyle \displaystyle 8^{1/3} c) \displaystyle \displaystyle 9^{-1/2} d) \displaystyle \displaystyle \sqrt{0,25} e) \displaystyle \displaystyle 4^{1,5}

Övning 1.2.2

Vilken är störst, \displaystyle 1343488^{3/2+4/3-17/6} eller \displaystyle 3/2?


Övning 1.2.3

Beräkna \displaystyle 2^{2+1}+3^{6/2}+(2+3)^3+3444^{7^0}

Övning 1.4.1

Beräkna följande

a) 18 modulo 7 b) 345332233 modulo 2 c) 156 modulo 29 d) 334 modulo 10

Övning 1.4.2

Beräkna följande

a) \displaystyle 36+23 b) \displaystyle 36^{129}+2186^{(5^2\cdot8/2-100)} c) \displaystyle 5^{345}+55

Övning 1.4.2

Beräkna följande

a) \displaystyle 36+23 b) \displaystyle 36^{129}+2186^{(5^2\cdot8/2-100)} c) \displaystyle 5^{345}+55

Övning 1.5.1

Kovertera följande tal till bas 5.

a) \displaystyle 4 b) \displaystyle 5 c) \displaystyle 125 d) \displaystyle 68


Övning 1.5.2

Beräkna \displaystyle 1002_3-234_5 och ge svaret i bas 8.

Tips: Konvertera talen till bas 10.

Övning 1.8.1

Beräkna

a) \displaystyle \displaystyle (1+2i) \left( 2-\frac{i}{4} \right) b) \displaystyle \displaystyle (3-2i)(4+i-(6-2i))

Övning 1.8.2

Vad är realdelen/imaginärdelen till

a) \displaystyle \displaystyle -1+5i b) \displaystyle \displaystyle -\pi i


Övning 1.8.3

Det finns inget reellt tal som kvadrerat blir \displaystyle -1, och därför införde man talet \displaystyle i, definierat som \displaystyle \sqrt{-1}.

Men löser det egentligen problemet? Förskjuter vi inte bara problemet till att bestämma vad \displaystyle \sqrt{i} blir?

Inte riktigt: undersök ekvationen \displaystyle (a+bi)^2=i, där \displaystyle a och \displaystyle b är reella tal.

Tips: Kom ihåg att om två komplexa tal är lika, så är även realdelarna lika, och imaginärdelarna är lika!

Övning 1.8.4

Vad blir \displaystyle \frac{1}{i} för något?

Tips: Pröva att förlänga bråket med något!

Övning 1.9.2

Förkorta \displaystyle \displaystyle \frac{x^2+4xy+4y^2}{x^2-4y^2} så lång som möjligt.

Övning 1.9.3

Faktorisera

a) \displaystyle \displaystyle x^2+1 b) \displaystyle \displaystyle x^2+y^2


Övning 1.9.4

Låt \displaystyle z=a+bi och \displaystyle w=c+di vara godtyckliga komplexa tal. Avgör vilka av följande påståenden stämmer:

a) \displaystyle \text{Re}(z)=\text{Re}(\bar{z})
b) \displaystyle \text{Im}(z)=\text{Im}(\bar{z})
c) \displaystyle \text{Re}(z)=\frac{1}{2}(z+\bar{z})
d) \displaystyle \bar{z}+\bar{w}=\overline{z+w}
e) \displaystyle \bar{z}+\bar{w}=2\text{Re}(z)+2\text{Re}(w)-z-w

Övning 2.1.2

Hur många reella rötter har följande polynom?

a) \displaystyle 3x+2 b) \displaystyle x^2-2x-3 c) \displaystyle x^2+4x+5

Övning 2.1.3

Är 3 ett polynom?

Övning 2.1.4

Polynom kan som bekant även ha komplexa koefficienter. Hitta rötterna till \displaystyle x^2+ix.


Övning 2.1.5

Finn rötterna till dessa polynom genom att faktorisera.

a) \displaystyle x^2-4 b) \displaystyle x^2-6x+9 c) \displaystyle x^3+4x^2+4x

Övning 2.1.6

Lös ekvationen \displaystyle -2x^2+10x=12 med hjälp av pq-formeln.

Övning 2.1.8

Låt \displaystyle p(x) = 4ix^3-12x^2 +5ix-15 . Hitta alla dess rötter.

Övning 2.2.1

Låt \displaystyle x^2+ax+b vara ett polynom. Vad ska koefficienterna \displaystyle a och \displaystyle b vara för att 2 och 5 ska vara rötter till polynomet?


Övning 2.3.1

Du är direktör för en loppcirkus och skall för årets uppvisning välja ut 7 stycken av dina 12 loppor. Du behöver 2 jonglörer, 4 clowner och 1 levande kanonkula. 6 av dina loppor kan vara antingen jonglör eller kanonkula, 7 st. kan vara clowner, och mästerloppan kan uppträda som allt. På hur många olika sätt kan du välja en uppsättning av loppor för uppvisningen?

Övning 3.1.1

Låt \displaystyle A=\{1,2,4\} och \displaystyle B=\{3,4\}. Bestäm

a) \displaystyle \displaystyle A\cup B b) \displaystyle \displaystyle A\cap B c) \displaystyle \displaystyle A\setminus B d) \displaystyle \displaystyle B \setminus A


Övning 3.1.2

Bestäm om följande funktioner är injektiva respektive surjektiva.

a) \displaystyle f:\mathbb{R} \rightarrow \mathbb{R} så att \displaystyle f(x)= x^2.
b) \displaystyle g:\mathbb{R}_+\rightarrow \mathbb{R} så att \displaystyle g(x)= -x-3.

\displaystyle \mathbb{R}_+ definieras som \displaystyle \mathbb{R}_+ = \{x\in \mathbb{R}\mid x>0\}.

c) \displaystyle h:\mathbb{R}_+\rightarrow \mathbb{R} så att \displaystyle h(x) = -\sqrt{x}.
d) \displaystyle r definierad genom \displaystyle r(x) = f(g(x)).
e) \displaystyle s definierad genom \displaystyle s(x) = f(h(x)).


Övning 3.1.3

Låt \displaystyle f:\mathbb{R}\rightarrow \{x\in \mathbb{R}\mid x\geq 0\} så att \displaystyle f(x)=x^2 och \displaystyle g:\{x\in \mathbb{R}\mid x\geq 0\} \rightarrow \mathbb{R} så att \displaystyle g(x) = -\sqrt{x}. Bestäm målmängd, definitionsmängd, värdemängd, surjektivitet och injektivitet för följande funktioner:

a) \displaystyle f
b) \displaystyle g
c) \displaystyle h(x) = f(g(x)).