Förberedande kurs i matematik
(Skillnad mellan versioner)
|
|
Rad 193: |
Rad 193: |
| ===Övning 2.1.4=== | | ===Övning 2.1.4=== |
| <div class="ovning"> | | <div class="ovning"> |
- | Polynom kan som bekant även ha komplexa koefficienter. Hitta rötterna till följande polynom. | + | Polynom kan som bekant även ha komplexa koefficienter. Hitta rötterna till |
- | {| width="100%" cellspacing="10px"
| + | <math>x^2+ix</math>. |
- | |a)
| + | |
- | | <math>x^2+ix</math>
| + | </div>{{#NAVCONTENT:Svar a)| Svar 2.1.4 | Lösning a)| Lösning 2.1.4}} |
- | |
| + | |
- | |b)
| + | |
- | | <math>x^2+x+ix-i</math>
| + | |
- | |}
| + | |
- | </div>{{#NAVCONTENT:Svar a)| Svar 2.1.4 | Svar b) | Svar 2.1.4b | Lösning a)| Lösning 2.1.4 | Lösning b) | Lösning 2.1.4b}} | + | |
| | | |
| ===Övning 3.1.1=== | | ===Övning 3.1.1=== |
Versionen från 20 juni 2012 kl. 14.33
Övning 1.2.1
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.2.2
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.2.3
Beräkna 22+1+36
2+(2+3)3+344470
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.4.1
Beräkna följande
a)
| 18 modulo 7
| b)
| 345332233 modulo 2
| c)
| 156 modulo 29
| d)
| 334 modulo 10
|
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.4.2
Beräkna följande
a)
| 36+23
| b)
| 36129+2186(52 8 2−100)
| c)
| 5345+55
|
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.4.2
Beräkna följande
a)
| 36+23
| b)
| 36129+2186(52 8 2−100)
| c)
| 5345+55
|
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.5.1
Kovertera följande tal till bas 5.
a)
| 4
| b)
| 5
| c)
| \displaystyle 125
| d)
| \displaystyle 68
|
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.5.2
Beräkna \displaystyle 1002_3-234_5 och ge svaret i bas 8.
Tips: Konvertera talen till bas 10.
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.8.1
Beräkna
a)
| \displaystyle \displaystyle (1+2i) \left( 2-\frac{i}{4} \right)
| b)
| \displaystyle \displaystyle (3-2i)(4+i-(6-2i))
|
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.8.2
Vad är realdelen/imaginärdelen till
a)
| \displaystyle \displaystyle -1+5i
| b)
| \displaystyle \displaystyle -\pi i
|
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.8.3
Det finns inget reellt tal som kvadrerat blir \displaystyle -1, och därför införde man talet \displaystyle i, definierat som \displaystyle \sqrt{-1}.
Men löser det egentligen problemet? Förskjuter vi inte bara problemet till att bestämma vad \displaystyle \sqrt{i} blir?
Inte riktigt: undersök ekvationen \displaystyle (a+bi)^2=i, där \displaystyle a och \displaystyle b är reella tal.
Tips: Kom ihåg att om två komplexa tal är lika, så är även realdelarna lika, och imaginärdelarna är lika!
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.8.4
Vad blir \displaystyle \frac{1}{i} för något?
Tips: Pröva att förlänga bråket med något!
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.9.2
Förkorta \displaystyle \displaystyle \frac{x^2+4xy+4y^2}{x^2-4y^2} så lång som möjligt.
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.9.3
Faktorisera
a)
| \displaystyle \displaystyle x^2+1
| b)
| \displaystyle \displaystyle x^2+y^2
|
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.9.4
Låt \displaystyle z=a+bi och \displaystyle w=c+di vara godtyckliga komplexa tal. Avgör vilka av följande påståenden stämmer:
a)
| \displaystyle \text{Re}(z)=\text{Re}(\bar{z})
|
b)
| \displaystyle \text{Im}(z)=\text{Im}(\bar{z})
|
c)
| \displaystyle \text{Re}(z)=\frac{1}{2}(z+\bar{z})
|
d)
| \displaystyle \bar{z}+\bar{w}=\overline{z+w}
|
e)
| \displaystyle \bar{z}+\bar{w}=2\text{Re}(z)+2\text{Re}(w)-z-w
|
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 2.1.2
Hur många reella rötter har följande polynom?
a)
| \displaystyle 3x+2
|
| b)
| \displaystyle x^2-2x-3
|
| c)
| \displaystyle x^2+4x+5
|
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 2.1.3
Svar 2.1.3
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 2.1.4
Polynom kan som bekant även ha komplexa koefficienter. Hitta rötterna till
\displaystyle x^2+ix.
Svar 2.1.4
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 3.1.1
Låt \displaystyle A=\{1,2,4\} och \displaystyle B=\{3,4\}. Bestäm
a)
| \displaystyle \displaystyle A\cup B
| b)
| \displaystyle \displaystyle A\cap B
| c)
| \displaystyle \displaystyle A\setminus B
|
| d)
| \displaystyle \displaystyle B \setminus A
|
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 3.1.2
Bestäm om följande funktioner är injektiva respektive surjektiva.
a)
| \displaystyle f:\mathbb{R} \rightarrow \mathbb{R} så att \displaystyle f(x)= x^2.
|
b)
| \displaystyle g:\mathbb{R}_+\rightarrow \mathbb{R} så att \displaystyle g(x)= -x-3.
\displaystyle \mathbb{R}_+ definieras som \displaystyle \mathbb{R}_+ = \{x\in \mathbb{R}\mid x>0\}.
|
c)
| \displaystyle h:\mathbb{R}_+\rightarrow \mathbb{R} så att \displaystyle h(x) = -\sqrt{x}.
|
d)
| \displaystyle r definierad genom \displaystyle r(x) = f(g(x)).
|
e)
| \displaystyle s definierad genom \displaystyle s(x) = f(h(x)).
|
|
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 3.1.3
Låt \displaystyle f:\mathbb{R}\rightarrow \{x\in \mathbb{R}\mid x\geq 0\} så att \displaystyle f(x)=x^2 och \displaystyle g:\{x\in \mathbb{R}\mid x\geq 0\} \rightarrow \mathbb{R} så att \displaystyle g(x) = -\sqrt{x}. Bestäm målmängd, definitionsmängd, värdemängd, surjektivitet och injektivitet för följande funktioner:
a)
| \displaystyle f
|
b)
| \displaystyle g
|
c)
| \displaystyle h(x) = f(g(x)).
|
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt