Lösning 1.8.1a
Förberedande kurs i matematik
(Skillnad mellan versioner)
m |
|||
| (En mellanliggande version visas inte.) | |||
| Rad 1: | Rad 1: | ||
| - | <math>\ | + | <math>\begin{align}(1+2i)\left(2-\frac{i}{4}\right)&=1\cdot2-1\cdot\frac{i}{4}+2i\cdot2-2i\cdot\frac{i}{4}=\\&= 2-\frac{i}{4}+4i+\frac{1}{2}=\\&=\frac{5}{2}+\frac{15i}{4}\end{align}</math> |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
Nuvarande version
\displaystyle \begin{align}(1+2i)\left(2-\frac{i}{4}\right)&=1\cdot2-1\cdot\frac{i}{4}+2i\cdot2-2i\cdot\frac{i}{4}=\\&= 2-\frac{i}{4}+4i+\frac{1}{2}=\\&=\frac{5}{2}+\frac{15i}{4}\end{align}
