Testsida2
Förberedande kurs i matematik
(Skillnad mellan versioner)
Rad 39: | Rad 39: | ||
| | | | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Lösning a)| Lösning 3.1.2.a | Lösning b) | Lösning 3.1.2b | Lösning c) | Lösning 3.1.2c | Lösning d) | Lösning 3.1.2d}} | + | </div>{{#NAVCONTENT:Lösning a)| Lösning 3.1.2.a | Lösning b) | Lösning 3.1.2b | Lösning c) | Lösning 3.1.2c | Lösning d) | Lösning 3.1.2d | Lösning e) | Lösning 3.1.2e}} |
a) | a) | ||
Rad 57: | Rad 57: | ||
e) | e) | ||
\begin{list}{}{} | \begin{list}{}{} | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
\end{list} | \end{list} |
Versionen från 12 juni 2012 kl. 11.56
Övning 3.1.1
Låt \displaystyle A=\{1,2,4\} och \displaystyle B=\{3,4\}. Bestäm
a) | \displaystyle \displaystyle A\cup B | b) | \displaystyle \displaystyle A\cap B | c) | \displaystyle \displaystyle A\setminus B | d) | \displaystyle \displaystyle B \setminus A |
Lösning a)
Lösning b)
Lösning c)
Lösning d)
Övning 3.1.2
Bestäm om följande funktioner är injektiva respektive surjektiva.
a) | \displaystyle f:\mathbb{R} \rightarrow \mathbb{R} så att \displaystyle f(x)= x^2. | |
b) | \displaystyle g:\mathbb{R}_+\rightarrow \mathbb{R} så att \displaystyle g(x)= -x-3.
\displaystyle \mathbb{R}_+ definieras som \displaystyle \mathbb{R}_+ = \{x\in \mathbb{R}\mid x>0\}. | |
c) | \displaystyle h:\mathbb{R}_+\rightarrow \mathbb{R} så att \displaystyle h(x) = -\sqrt{x}. | |
d) | \displaystyle r definierad genom \displaystyle r(x) = f(g(x)). | |
e) | \displaystyle s definierad genom \displaystyle s(x) = f(h(x)). |
Lösning a)
Lösning b)
Lösning c)
Lösning d)
Lösning e)
a)
b) \begin{list}{}{}
\end{list} c) \begin{list}{}{}
\end{list} d) \begin{list}{}{}
\end{list} e) \begin{list}{}{}
\end{list}