Testsida2
Förberedande kurs i matematik
(Skillnad mellan versioner)
(Ny sida: ===Övning 3.1.1=== <div class="ovning"> Låt <math>A=\{1,2,4\}</math> och <math>B=\{3,4\}</math>. Bestäm {| width="100%" cellspacing="10px" |a) | <math>\displaystyle A\cup B</math> |b) |...) |
|||
Rad 14: | Rad 14: | ||
|} | |} | ||
</div>{{#NAVCONTENT:Lösning a)| Lösning 3.1.1a | Lösning b) | Lösning 3.1.1b | Lösning c) | Lösning 3.1.1c | Lösning d) | Lösning 3.1.1d}} | </div>{{#NAVCONTENT:Lösning a)| Lösning 3.1.1a | Lösning b) | Lösning 3.1.1b | Lösning c) | Lösning 3.1.1c | Lösning d) | Lösning 3.1.1d}} | ||
- | |||
- | Exempellösning: | ||
- | <math>A</math> innehåller <math>1</math>, <math>2</math> och <math>4</math> och av dessa innehåller <math>B</math> siffran <math>4</math>. Alltså är <math>A\setminus B = \{1,2\}</math>. <math>B</math> innehåller <math>3</math> och <math>4</math> och av dessa innehåller <math>A</math> siffran <math>4</math>. Alltså är <math>B\setminus A = \{3\}</math>. |
Versionen från 11 juni 2012 kl. 12.42
Övning 3.1.1
Låt \displaystyle A=\{1,2,4\} och \displaystyle B=\{3,4\}. Bestäm
a) | \displaystyle \displaystyle A\cup B | b) | \displaystyle \displaystyle A\cap B | c) | \displaystyle \displaystyle A\setminus B | d) | \displaystyle \displaystyle B \setminus A |
Lösning a)
Lösning b)
Lösning c)
Lösning d)