Testsida3
Förberedande kurs i matematik
Rad 1: | Rad 1: | ||
- | ===Övning 3.2.10=== | ||
- | |||
- | <div class="ovning"> | ||
- | Låt | ||
- | |||
- | <math>\qquad\begin{align}f:\mathbb{N}\to\mathbb{R}\\g:\mathbb{R}\to\mathbb{C}\end{align}</math> | ||
- | |||
- | {| width="100%" cellspacing="10px" | ||
- | |a) Kan man definiera <math>f(g(a))</math>? Kan man definiera <math>g(f(a))</math>? | ||
- | |- | ||
- | |b) Vad blir <math>f(2/3)</math>? | ||
- | |- | ||
- | |c) Vad blir <math>g(f(2/3))</math>? | ||
- | |- | ||
- | |d) Finns det ett naturligt tal <math>n</math> sådant att | ||
- | <math>\qquad f(n)=2+3i</math>? | ||
- | |- | ||
- | |e) Finns det ett naturligt tal <math>n</math> sådant att | ||
- | <math>\qquad f(n)=2\pi</math>? | ||
- | |- | ||
- | || | ||
- | |} | ||
- | </div>{{#NAVCONTENT: Svar a) | Svar 3.2.10.a | Svar b) | Svar 3.2.10.b | Svar c) | Svar 3.2.10.c | Svar d) | Svar 3.2.10.d | Svar e) | Svar 3.2.10.e | Lösning a) | Lösning 3.2.10.a | Lösning b) | Lösning 3.2.10.b | Lösning c) | Lösning 3.2.10.c | Lösning d) | Lösning 3.2.10.d | Lösning e) | Lösning 3.2.10.e }} | ||
- | |||
- | |||
- | |||
- | ===Övning 3.5.1=== | ||
- | |||
- | <div class="ovning"> | ||
- | {| width="100%" cellspacing="10px" | ||
- | |a) Använd sambandet <math>\sin(v)=\sin(\pi-v)</math> och standardvinklar för att beräkna <math>\sin(5\pi/6)</math>. | ||
- | |- | ||
- | |b) Använd följande samband | ||
- | |||
- | <math>\qquad\cos(x)=\cos(x+2\pi n),\qquad n\in\mathbb{Z}</math> | ||
- | |||
- | <math>\qquad\cos(x)=-\cos(x+\pi)</math> | ||
- | |||
- | samt standardvinklar för att räkna ut <math>\cos(37\pi/4)</math>. | ||
- | |- | ||
- | || | ||
- | |} | ||
- | </div>{{#NAVCONTENT: Svar a) | Svar 3.5.1.a | Svar b) | Svar 3.5.1.b | Lösning a) | Lösning 3.5.1.a | Lösning b) | Lösning 3.5.1.b }} | ||
- | |||
- | |||
===Övning 2.3.4=== | ===Övning 2.3.4=== | ||
Rad 60: | Rad 15: | ||
|} | |} | ||
</div>{{#NAVCONTENT: Svar | Svar 2.3.4 | Lösning | Lösning 2.3.4 }} | </div>{{#NAVCONTENT: Svar | Svar 2.3.4 | Lösning | Lösning 2.3.4 }} | ||
- | |||
- | |||
- | ===Övning 2.3.2=== | ||
- | |||
- | <div class="ovning"> | ||
- | {| width="100%" cellspacing="10px" | ||
- | |a) Hur många palidromer av längd 6 kan man bilda med hjälp av siffrorna <math>0,1,2,\dots,9</math>? | ||
- | |- | ||
- | |b) Hur många palidromer av längd 5 kan man bilda med hjälp av siffrorna <math>0,1,2,\dots,9</math>? | ||
- | |- | ||
- | || | ||
- | |} | ||
- | </div>{{#NAVCONTENT: Svar a) | Svar 2.3.2.a | Svar b) | Svar 2.3.2.b | Lösning a) | Lösning 2.3.2.a | Lösning b) | Lösning 2.3.2.b }} | ||
- | |||
- | ===Övning 2.3.3=== | ||
- | |||
- | <div class="ovning"> | ||
- | {| width="100%" cellspacing="10px" | ||
- | | | ||
- | Man kan välja mellan 3 olika tröjor (röd, gul och svart), 2 olika byxor (vita och svarta) och 5 olika hattar (gul, vit, svart, grön och blå). | ||
- | |- | ||
- | |a) Lena är inte så stilig, hon kombinerar färger fritt. På hur många sätt kan hon välja sina kläder? | ||
- | |- | ||
- | |b) Jonas vill ha svarta byxor och en gul tröja, men hattens färg tycker han inte är så viktig. Hur många olika klädval har han? | ||
- | |- | ||
- | |c) Anna vill inte kombinera svarta byxor med en gul tröja. På hur många sätt kan hon kombinera olika kläder? | ||
- | |- | ||
- | || | ||
- | |} | ||
- | </div>{{#NAVCONTENT: Svar a) | Svar 2.3.3.a | Svar b) | Svar 2.3.3.b | Svar c) | Svar 2.3.3.c | Lösning a) | Lösning 2.3.3.a | Lösning b) | Lösning 2.3.3.b | Lösning c) | Lösning 2.3.3.c | Tips c) | Tips 2.3.3.c}} | ||
- | |||
- | |||
- | ===Övning 3.2.1=== | ||
- | |||
- | <div class="ovning"> | ||
- | Låt <math>f(x)=\sqrt{x}</math>. Vilka av följande val till definitions- och målmängd är tillåtna? | ||
- | {| width="100%" cellspacing="10px" | ||
- | |a) <math>f:\mathbb{R}_+\to \mathbb{R}_+</math> | ||
- | |- | ||
- | |b) <math>f:\mathbb{R}_+\to \mathbb{R}</math> | ||
- | |- | ||
- | |c) <math>f:\mathbb{R}\to \mathbb{R}</math> | ||
- | |- | ||
- | |d) <math>f:\mathbb{R}\to \mathbb{C}</math> | ||
- | |- | ||
- | |e) <math>f:\mathbb{C}\to \mathbb{C}</math> | ||
- | |- | ||
- | || | ||
- | |} | ||
- | </div>{{#NAVCONTENT: Svar a) | Svar 3.2.1a | Svar b) | Svar 3.2.1b | Svar c) | Svar 3.2.1c | Svar d) | Svar 3.2.1d | Svar e) | Svar 3.2.1e | Lösning a) | Lösning 3.2.1 | Lösning b) | Lösning 3.2.1b | Lösning c) | Lösning 3.2.1c | Lösning d) | Lösning 3.2.1d | Lösning e) | Lösning 3.2.1e}} | ||
===Övning 4.2.2=== | ===Övning 4.2.2=== |
Versionen från 30 juli 2012 kl. 14.09
Övning 2.3.4
Övning 4.2.2
En punkt kallas \displaystyle a ett lokalt minimum om funktionsvärdena precis intill punkten är mindre än eller lika med \displaystyle f(a). På motsvarande sätt definieras ett lokalt maximum. Hitta antalet lokala maximi- och minimipunkter på intervallet \displaystyle (-2,2). Notera att \displaystyle 2 och \displaystyle -2 inte ligger på intervallet.
a) | \displaystyle f(x)=\frac{3x^2}{4} +x-3/2 | |
b) | \displaystyle f(x)=x\sin{(6x)} | |
c) | \displaystyle f(x)=2 | |
d) | \displaystyle f(x)=\begin{cases}-2x+4&\text{om }x<-1\\2&\text{om }-1\leq x\leq 1\\2x+4&\text{om }x>1\end{cases} | |
e) | \displaystyle f(x)=x+1 | |
f) | \displaystyle f(x)=\begin{cases}x+2&\text{om }x<-1\\-2 x + 1&\text{om }-1\leq x< 1\\x&\text{om }x\geq 1\end{cases} |