Processing Math: 54%
4.3 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Selected tab +Gewählter Tab)) |
K (Robot: Automated text replacement (-Not selected tab +Nicht gewählter Tab)) |
||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Nicht gewählter Tab|[[4.3 Trigonometric relations|Theorie]]}} |
{{Gewählter Tab|[[4.3 Übungen|Übungen]]}} | {{Gewählter Tab|[[4.3 Übungen|Übungen]]}} | ||
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| |
Version vom 09:44, 22. Okt. 2008
Theorie | Übungen |
Übung 4.3:1
Determine the angles 2
a) | ![]() | b) | ![]() | c) | ![]() |
Übung 4.3:2
Determine the angles
a) | ![]() | b) | ![]() |
Übung 4.3:3
Suppose that 2
v
2
a) | | b) | ![]() |
c) | | d) | ![]() ![]() ![]() |
e) | ![]() ![]() ![]() | f) | ![]() ![]() ![]() |
Übung 4.3:4
Suppose that v
a) | | b) | |
c) | | d) | |
e) | ![]() ![]() ![]() | f) | ![]() ![]() ![]() |
Übung 4.3:5
Determine
Übung 4.3:6
a) | Determine \displaystyle \ \sin{v}\ and \displaystyle \ \tan{v}\ if \displaystyle \ \cos{v}=\displaystyle \frac{3}{4}\ and \displaystyle \ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,. |
b) | Determine \displaystyle \ \cos{v}\ and \displaystyle \ \tan{v}\ if \displaystyle \ \sin{v}=\displaystyle \frac{3}{10}\ and \displaystyle \,v\, lies in the second quadrant. |
c) | Determine \displaystyle \ \sin{v}\ and \displaystyle \ \cos{v}\ if \displaystyle \ \tan{v}=3\ and \displaystyle \ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,. |
Übung 4.3:7
Determine \displaystyle \ \sin{(x+y)}\ if
a) | \displaystyle \sin{x}=\displaystyle \frac{2}{3}\,,\displaystyle \ \sin{y}=\displaystyle \frac{1}{3}\ and \displaystyle \,x\,, \displaystyle \,y\, are angles in the first quadrant. |
b) | \displaystyle \cos{x}=\displaystyle \frac{2}{5}\,, \displaystyle \ \cos{y}=\displaystyle \frac{3}{5}\ and \displaystyle \,x\,, \displaystyle \,y\, are angles in the first quadrant. |
Übung 4.3:8
Show the following trigonometric relations
a) | \displaystyle \tan^2v=\displaystyle\frac{\sin^2v}{1-\sin^2v} |
b) | \displaystyle \displaystyle \frac{1}{\cos v}-\tan v=\frac{\cos v}{1+\sin v} |
c) | \displaystyle \tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u} |
d) | \displaystyle \displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v |
Übung 4.3:9
Show Feynman's equality | |
(Hint: use the formula for double angles on \displaystyle \,\sin 160^\circ\,.) |