Lösung 4.3:8c
Aus Online Mathematik Brückenkurs 1
Wir könnten \displaystyle \tan\frac{u}{2} als Bruch mit Sinus und Kosinus schreiben und dann den Ausdruck
\displaystyle \tan\frac{u}{2} = \frac{\sin\dfrac{u}{2}}{\cos\dfrac{u}{2}} = \ldots |
erweitern. Dies ergibt aber Wurzelausdrücke, die recht komplizierte Rechnungen erfordern. Stattdessen betrachten wir die rechte Seite der Gleichung und erweitern diese.
Wir schreiben \displaystyle u wie \displaystyle 2\cdot(u/2) und verwenden die Doppelwinkelfunktion,
\displaystyle \frac{\sin u}{1+\cos u} = \frac{\sin \Bigl(2\cdot\dfrac{u}{2}\Bigr)}{1+\cos\Bigl(2\cdot\dfrac{u}{2}\Bigr)} = \frac{2\cos\dfrac{u}{2}\cdot \sin\dfrac{u}{2}}{1+\cos^2\cfrac{u}{2}-\sin^2\cfrac{u}{2}}\,\textrm{.} |
Die 1 im Nenner können wir als \displaystyle \cos^2(u/2) + \sin^2(u/2) schreiben, und so erhalten wir
\displaystyle \begin{align}
\frac{2\cos\dfrac{u}{2}\cdot\sin\dfrac{u}{2}}{1+\cos^2\dfrac{u}{2}-\sin^2\dfrac{u}{2}} &= \frac{2\cos\dfrac{u}{2}\sin\dfrac{u}{2}}{\cos^2\dfrac{u}{2} + \sin^2\dfrac{u}{2} + \cos^2\dfrac{u}{2} - \sin^2\dfrac{u}{2}}\\[8pt] &= \frac{2\cos\dfrac{u}{2}\sin\dfrac{u}{2}}{2\cos^2\dfrac{u}{2}}\\[5pt] &= \frac{\sin\dfrac{u}{2}}{\cos\dfrac{u}{2}}\\[8pt] &= \tan\frac{u}{2}\,\textrm{.} \end{align} |