4.3 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (07:34, 2. Sep. 2009) (bearbeiten) (rückgängig)
(Added reference to the tests at the bottom of the page)
 
(Der Versionsvergleich bezieht 32 dazwischen liegende Versionen mit ein.)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[4.3 Trigonometriska samband|Teori]]}}
+
{{Nicht gewählter Tab|[[4.3 Trigonometric relations|Theorie]]}}
-
{{Mall:Vald flik|[[4.3 Övningar|Övningar]]}}
+
{{Gewählter Tab|[[4.3 Übungen|Übungen]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 4.3:1===
+
===Übung 4.3:1===
<div class="ovning">
<div class="ovning">
-
Bestäm de vinklar <math>\,v\,</math> mellan <math>\,\displaystyle \frac{\pi}{2}\,</math> och <math>\,2\pi\,</math> som uppfyller
+
Bestimme den Winkel <math>\,v\,</math> zwischen <math>\,\displaystyle \frac{\pi}{2}\,</math> und <math>\,2\pi\,,</math> der folgende Gleichung erfüllt:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 18: Zeile 18:
|width="33%" | <math>\tan{v}=\tan{\displaystyle \frac{2\pi}{7}}</math>
|width="33%" | <math>\tan{v}=\tan{\displaystyle \frac{2\pi}{7}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:1|Lösning a |Lösning 4.3:1a|Lösning b |Lösning 4.3:1b|Lösning c |Lösning 4.3:1c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.3:1|Lösung a |Lösung 4.3:1a|Lösung b |Lösung 4.3:1b|Lösung c |Lösung 4.3:1c}}
-
===Övning 4.3:2===
+
===Übung 4.3:2===
<div class="ovning">
<div class="ovning">
-
Bestäm de vinklar <math>\,v\,</math> mellan 0 och <math>\,\pi\,</math> som uppfyller
+
Bestimme den Winkel <math>\,v\,</math> zwischen 0 und <math>\,\pi\,</math>, der die folgende Gleichung erfüllt:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 29: Zeile 29:
|width="50%" | <math>\cos{v} = \cos{ \displaystyle \frac{7\pi}{5}}</math>
|width="50%" | <math>\cos{v} = \cos{ \displaystyle \frac{7\pi}{5}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:2|Lösning a |Lösning 4.3:2a|Lösning b |Lösning 4.3:2b}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.3:2|Lösung a |Lösung 4.3:2a|Lösung b |Lösung 4.3:2b}}
-
===Övning 4.3:3===
+
===Übung 4.3:3===
<div class="ovning">
<div class="ovning">
-
Antag att <math>\,-\displaystyle \frac{\pi}{2} \leq v \leq \displaystyle \frac{\pi}{2}\,</math> och att <math>\,\sin{v} = a\,</math>. Uttryck med hjälp av <math>\,a</math>
+
Angenommen, <math>\,-\displaystyle \frac{\pi}{2} \leq v \leq \displaystyle \frac{\pi}{2}\,</math> und <math>\,\sin{v} = a\,</math>. Schreibe folgende Ausdrücke mit <math>\,a</math>.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 50: Zeile 50:
|width="50%" | <math>\sin{\left( \displaystyle \frac{\pi}{3} + v \right)}</math>
|width="50%" | <math>\sin{\left( \displaystyle \frac{\pi}{3} + v \right)}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:3|Lösning a |Lösning 4.3:3a|Lösning b |Lösning 4.3:3b|Lösning c |Lösning 4.3:3c|Lösning d |Lösning 4.3:3d|Lösning e |Lösning 4.3:3e|Lösning f |Lösning 4.3:3f}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.3:3|Lösung a |Lösung 4.3:3a|Lösung b |Lösung 4.3:3b|Lösung c |Lösung 4.3:3c|Lösung d |Lösung 4.3:3d|Lösung e |Lösung 4.3:3e|Lösung f |Lösung 4.3:3f}}
-
===Övning 4.3:4===
+
===Übung 4.3:4===
<div class="ovning">
<div class="ovning">
-
Antag att <math>\,0 \leq v \leq \pi\,</math> och att <math>\,\cos{v}=b\,</math>. Uttryck med hjälp av <math>\,b</math>
+
Angenommen, <math>\,0 \leq v \leq \pi\,</math> und <math>\,\cos{v}=b\,</math>. Schreibe folgende Ausdrücke mit <math>\,b</math>:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 71: Zeile 71:
|width="50%" | <math>\cos{\left( v-\displaystyle \frac{\pi}{3} \right)}</math>
|width="50%" | <math>\cos{\left( v-\displaystyle \frac{\pi}{3} \right)}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:4|Lösning a |Lösning 4.3:4a|Lösning b |Lösning 4.3:4b|Lösning c |Lösning 4.3:4c|Lösning d |Lösning 4.3:4d|Lösning e |Lösning 4.3:4e|Lösning f |Lösning 4.3:4f}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.3:4|Lösung a |Lösung 4.3:4a|Lösung b |Lösung 4.3:4b|Lösung c |Lösung 4.3:4c|Lösung d |Lösung 4.3:4d|Lösung e |Lösung 4.3:4e|Lösung f |Lösung 4.3:4f}}
-
===Övning 4.3:5===
+
===Übung 4.3:5===
<div class="ovning">
<div class="ovning">
-
För en spetsig vinkel <math>\,v\,</math> i en triangel gäller att <math>\,\sin{v}=\displaystyle \frac{5}{7}\,</math>. Bestäm <math>\,\cos{v}\,</math> och <math>\,\tan{v}\,</math>.
+
Bestimme <math>\,\cos{v}\,</math> und <math>\,\tan{v}\,</math>, wenn <math>\,v\,</math> ein spitzer Winkel ist und <math>\,\sin{v}=\displaystyle \frac{5}{7}\,</math> ist.
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:5|Lösning |Lösning 4.3:5}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.3:5|Lösung |Lösung 4.3:5}}
-
===Övning 4.3:6===
+
===Übung 4.3:6===
<div class="ovning">
<div class="ovning">
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | Bestäm <math>\ \sin{v}\ </math> och <math>\ \tan{v}\ </math> om <math>\ \cos{v}=\displaystyle \frac{3}{4}\ </math> och <math>\ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,</math>.
+
|width="100%" | Bestimme <math>\ \sin{v}\ </math> und <math>\ \tan{v}\ </math>, wenn <math>\ \cos{v}=\displaystyle \frac{3}{4}\ </math> und <math>\ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,</math>.
|-
|-
|b)
|b)
-
|width="100%" | Bestäm <math>\ \cos{v}\ </math> och <math>\ \tan{v}\ </math> om <math>\ \sin{v}=\displaystyle \frac{3}{10}\ </math> och <math>\,v\,</math> ligger i den andra kvadranten.
+
|width="100%" | Bestimme <math>\ \cos{v}\ </math> und <math>\ \tan{v}\ </math>, wenn <math>\ \sin{v}=\displaystyle \frac{3}{10}\ </math> und <math>\,v\,</math> im zweiten Quadrant liegt.
|-
|-
|c)
|c)
-
|width="100%" | Bestäm <math>\ \sin{v}\ </math> och <math>\ \cos{v}\ </math> om <math>\ \tan{v}=3\ </math> och <math>\ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,</math>.
+
|width="100%" | Bestimme <math>\ \sin{v}\ </math> und <math>\ \cos{v}\ </math>, wenn <math>\ \tan{v}=3\ </math> und <math>\ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,</math>.
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:6|Lösning a |Lösning 4.3:6a|Lösning b |Lösning 4.3:6b|Lösning c |Lösning 4.3:6c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.3:6|Lösung a |Lösung 4.3:6a|Lösung b |Lösung 4.3:6b|Lösung c |Lösung 4.3:6c}}
-
===Övning 4.3:7===
+
===Übung 4.3:7===
<div class="ovning">
<div class="ovning">
-
Bestäm <math>\ \sin{(x+y)}\ </math> om
+
Bestimme <math>\ \sin{(x+y)}\ </math> wenn
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | <math>\sin{x}=\displaystyle \frac{2}{3}\,</math>,<math>\ \sin{y}=\displaystyle \frac{1}{3}\ </math> och <math>\,x\,$, $\,y\,</math> är vinklar i första kvadranten..
+
|width="100%" | <math>\sin{x}=\displaystyle \frac{2}{3}\,</math>,<math>\ \sin{y}=\displaystyle \frac{1}{3}\ </math> und <math>\,x\,</math> und <math> \,y\,</math> im ersten Quadrant liegen.
|-
|-
|b)
|b)
-
|width="100%" | <math>\cos{x}=\displaystyle \frac{2}{5}\,</math>, <math>\ \cos{y}=\displaystyle \frac{3}{5}\ </math> och <math>\,x\,</math>, <math>\,y\,</math> är vinklar i första kvadranten.
+
|width="100%" | <math>\cos{x}=\displaystyle \frac{2}{5}\,</math>, <math>\ \cos{y}=\displaystyle \frac{3}{5}\ </math> und <math>\,x\,</math> und <math>\,y\,</math> im ersten Quadrant liegen.
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:7|Lösning a |Lösning 4.3:7a|Lösning b |Lösning 4.3:7b}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.3:7|Lösung a |Lösung 4.3:7a|Lösung b |Lösung 4.3:7b}}
-
===Övning 4.3:8===
+
===Übung 4.3:8===
<div class="ovning">
<div class="ovning">
-
Visa f&ouml;ljande trigonometriska samband
+
Leite folgende trigonometrische Identitäten her:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 116: Zeile 116:
|c)
|c)
|width="100%" | <math>\tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}</math>
|width="100%" | <math>\tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}</math>
 +
|-
|d)
|d)
|width="100%" | <math>\displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v</math>
|width="100%" | <math>\displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:8|Lösning a |Lösning 4.3:8a|Lösning b |Lösning 4.3:8b|Lösning c |Lösning 4.3:8c|Lösning d |Lösning 4.3:8d}}
+
</div>{{#NAVCONTENT:Lösung a |Lösung 4.3:8a|Lösung b |Lösung 4.3:8b|Lösung c |Lösung 4.3:8c|Lösung d |Lösung 4.3:8d}}
 +
 
 +
===Übung 4.3:9===
 +
<div class="ovning">
 +
{| width="100%" cellspacing="10px"
 +
|
 +
|width="100%" | Zeige Feynmans Gleichheit
 +
|-
 +
|
 +
|width="100%" |<center> <math>\cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \displaystyle\frac{1}{8}\,\mbox{.}</math> </center>
 +
|-
 +
|
 +
|width="100%" |(Hinweis: Gehe von der Doppelwinkelfunktionen für <math>\,\sin 160^\circ\,</math> aus.)
 +
|}
 +
</div>{{#NAVCONTENT:Lösung |Lösung 4.3:9}}
 +
 
 +
 
 +
'''Diagnostische Prüfung und Schlussprüfung'''
 +
 
 +
Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge.

Aktuelle Version

       Theorie          Übungen      

Übung 4.3:1

Bestimme den Winkel \displaystyle \,v\, zwischen \displaystyle \,\displaystyle \frac{\pi}{2}\, und \displaystyle \,2\pi\,, der folgende Gleichung erfüllt:

a) \displaystyle \cos{v}=\cos{\displaystyle \frac{\pi}{5}} b) \displaystyle \sin{v}=\sin{\displaystyle \frac{\pi}{7}} c) \displaystyle \tan{v}=\tan{\displaystyle \frac{2\pi}{7}}

Übung 4.3:2

Bestimme den Winkel \displaystyle \,v\, zwischen 0 und \displaystyle \,\pi\,, der die folgende Gleichung erfüllt:

a) \displaystyle \cos{v} = \cos{\displaystyle \frac{3\pi}{2}} b) \displaystyle \cos{v} = \cos{ \displaystyle \frac{7\pi}{5}}

Übung 4.3:3

Angenommen, \displaystyle \,-\displaystyle \frac{\pi}{2} \leq v \leq \displaystyle \frac{\pi}{2}\, und \displaystyle \,\sin{v} = a\,. Schreibe folgende Ausdrücke mit \displaystyle \,a.

a) \displaystyle \sin{(-v)} b) \displaystyle \sin{(\pi-v)}
c) \displaystyle \cos{v} d) \displaystyle \sin{\left(\displaystyle \frac{\pi}{2}-v\right)}
e) \displaystyle \cos{\left( \displaystyle \frac{\pi}{2} + v\right)} f) \displaystyle \sin{\left( \displaystyle \frac{\pi}{3} + v \right)}

Übung 4.3:4

Angenommen, \displaystyle \,0 \leq v \leq \pi\, und \displaystyle \,\cos{v}=b\,. Schreibe folgende Ausdrücke mit \displaystyle \,b:

a) \displaystyle \sin^2{v} b) \displaystyle \sin{v}
c) \displaystyle \sin{2v} d) \displaystyle \cos{2v}
e) \displaystyle \sin{\left( v+\displaystyle \frac{\pi}{4} \right)} f) \displaystyle \cos{\left( v-\displaystyle \frac{\pi}{3} \right)}

Übung 4.3:5

Bestimme \displaystyle \,\cos{v}\, und \displaystyle \,\tan{v}\,, wenn \displaystyle \,v\, ein spitzer Winkel ist und \displaystyle \,\sin{v}=\displaystyle \frac{5}{7}\, ist.

Übung 4.3:6

a) Bestimme \displaystyle \ \sin{v}\ und \displaystyle \ \tan{v}\ , wenn \displaystyle \ \cos{v}=\displaystyle \frac{3}{4}\ und \displaystyle \ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,.
b) Bestimme \displaystyle \ \cos{v}\ und \displaystyle \ \tan{v}\ , wenn \displaystyle \ \sin{v}=\displaystyle \frac{3}{10}\ und \displaystyle \,v\, im zweiten Quadrant liegt.
c) Bestimme \displaystyle \ \sin{v}\ und \displaystyle \ \cos{v}\ , wenn \displaystyle \ \tan{v}=3\ und \displaystyle \ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,.

Übung 4.3:7

Bestimme \displaystyle \ \sin{(x+y)}\ wenn

a) \displaystyle \sin{x}=\displaystyle \frac{2}{3}\,,\displaystyle \ \sin{y}=\displaystyle \frac{1}{3}\ und \displaystyle \,x\, und \displaystyle \,y\, im ersten Quadrant liegen.
b) \displaystyle \cos{x}=\displaystyle \frac{2}{5}\,, \displaystyle \ \cos{y}=\displaystyle \frac{3}{5}\ und \displaystyle \,x\, und \displaystyle \,y\, im ersten Quadrant liegen.

Übung 4.3:8

Leite folgende trigonometrische Identitäten her:

a) \displaystyle \tan^2v=\displaystyle\frac{\sin^2v}{1-\sin^2v}
b) \displaystyle \displaystyle \frac{1}{\cos v}-\tan v=\frac{\cos v}{1+\sin v}
c) \displaystyle \tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}
d) \displaystyle \displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v

Übung 4.3:9

Zeige Feynmans Gleichheit
\displaystyle \cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \displaystyle\frac{1}{8}\,\mbox{.}
(Hinweis: Gehe von der Doppelwinkelfunktionen für \displaystyle \,\sin 160^\circ\, aus.)


Diagnostische Prüfung und Schlussprüfung

Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge.