16. Linjära avbildningar
SamverkanLinalgLIU
16.1 Definition av linjär avbildning
16.6 Sammansatta linjära avbildningar
16.7 Nollrum, Värderum och dimensionssatsen
16.9 Linjära avbildningar och basbyte
16.10 Projektioner och speglingar med basbyte
Innehåll |
Basbyte
Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 8.pdf
Övningar
1. Givet två baser \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} och \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2,\boldsymbol{f}_3\}. Ange följande bassamband
\boldsymbol{f}_1&=&\boldsymbol{e}_1&+&\boldsymbol{e}_2&+&\boldsymbol{e}_3\\ \boldsymbol{f}_2&=& & &\boldsymbol{e}_2&-&\boldsymbol{e}_3\\
\boldsymbol{f}_3&=&\boldsymbol{e}_1&+&\boldsymbol{e}_2&&\end{array}\right.på matrisform. Ange också det omvända bassambandet samt koordinatsambanden.
2. Givet en bas \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} i planet. Vi inför en ny bas \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2\} genom att sätta \displaystyle \underline{\boldsymbol{f}}=\underline{\boldsymbol{e}}T, där \displaystyle T=\left(\begin{array}{rr} 2& 3\\ 1& 2\end{array}\right). En linje har ekvationen \displaystyle x_1+7x_2=0 i den gamla basen. Vad är dess ekvationen i den nya basen?
Linjära avbildningar och basbyte
Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 9.pdf
Övningar
1. Den linjära avbildningen \displaystyle F:{\bf R}^2\rightarrow{\bf R}^2 har i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} har matrisen
Ange \displaystyle F:s matris \displaystyle A_{\boldsymbol{f}} i basen
Ange också sambandet mellan koordinaterna i de båda baserna.
2. Låt \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} var en bas i rummet och \displaystyle F en linjär avbildning med matrisen
i denna bas. Vad är matrisen för \displaystyle F i den bas \displaystyle \underline{\boldsymbol{f}} som ges av
\boldsymbol{f}_1=\boldsymbol{e}_2-\boldsymbol{e}_3,\qquad \boldsymbol{f}_2=\boldsymbol{e}_1-\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad
\boldsymbol{f}_3=-\boldsymbol{e}_1+\boldsymbol{e}_2.
3. Avbildningen \displaystyle F har i basen \displaystyle \underline{\boldsymbol{e}} matrisen
Bestäm \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{f}} om
\boldsymbol{f}_1=\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad \boldsymbol{f}_2=\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad
\boldsymbol{f}_3=\boldsymbol{e}_1.
4. Antag att \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} är en bas i \displaystyle {\bf R}^3 och låt den linjära avbildningen \displaystyle F:{\bf R}^3\rightarrow{\bf R}^3 definieras genom
F(\boldsymbol{e}_1)=\boldsymbol{e}_1+2\boldsymbol{e}_3,\qquad F(\boldsymbol{e}_2)=\boldsymbol{e}_1+3\boldsymbol{e}_2+\boldsymbol{e}_3\qquad
F(\boldsymbol{e}_3)=2\boldsymbol{e}_2+\boldsymbol{e}_3.Bestäm matrisen till \displaystyle F med avseende på basen \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2,\boldsymbol{f}_3\}, där
\boldsymbol{f}_1=\boldsymbol{e}_1\qquad \boldsymbol{f}_2=\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad
\boldsymbol{f}_3=\boldsymbol{e}_1+\boldsymbol{e}_2+\boldsymbol{e}_3.
5. Visa att matriserna
A=\left(\begin{array}{rrr} 0& -1& 0\\ 1& 0& 1\\ 1& 2& 3\end{array}\right)\qquad och\qquad
B=\left(\begin{array}{rrr} 1& 0& 1\\ 1& 2& 0\\ -1& 0& 3\end{array}\right)ej kan representera samma linjära avbildning \displaystyle F:{\bf R}^3\rightarrow{\bf R}^3.
Projektioner och speglingar med basbyte
Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 10.pdf
Övningar
1. Låt \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en ON-bas i planet. Inför en ny bas \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2\} genom
\left\{\begin{array}{lcl}\boldsymbol{f}_1&=&\frac{1}{\sqrt5}(\boldsymbol{e}_1+2\boldsymbol{e}_2)\\ \boldsymbol{f}_2&=&\frac{1}{\sqrt5}(2\boldsymbol{e}_1-\boldsymbol{e}_2)\end{array}\right.
Låt \displaystyle F vara ortogonal projektion på linjen \displaystyle x_1+2x_2=0. Ange \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{f}} och beräkna med hjälp av bassambandet \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{e}}.
2. Låt \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en ON-bas i planet. Inför en ny bas \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2\} genom
\left\{\begin{array}{lcl}\boldsymbol{f}_1&=&\frac{1}{\sqrt5}(\boldsymbol{e}_1+2\boldsymbol{e}_2)\\ \boldsymbol{f}_2&=&\frac{1}{\sqrt5}(2\boldsymbol{e}_1-\boldsymbol{e}_2)\end{array}\right.
Låt \displaystyle F vara spegling i linjen \displaystyle x_1+2x_2=0. Ange \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{f}} och beräkna med hjälp av bassambandet \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{e}}.
3. Låt \displaystyle \underline{\boldsymbol{e}} vara en ON-bas i rummet och låt \displaystyle F vara en ortogonal projektion på planet \displaystyle x_1+x_2+x_3=0. Välj en lämplig ny bas \displaystyle \underline{\boldsymbol{f}} och ange \displaystyle F:s matris i denna. Beräkna med hjälp av bassambanden matrisen i basen \displaystyle \underline{\boldsymbol{e}}.
Rotationer
Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 11.pdf
Övningar
1. Låt \displaystyle \underline{\boldsymbol{e}} vara en höger ON-bas i rummet och \displaystyle F rotation \displaystyle 2\pi/3 i positiv led runt
\displaystyle \boldsymbol{e}_1+\boldsymbol{e}_2+\boldsymbol{e}_3.
Beräkna avbildningens matris i basen \displaystyle \underline{\boldsymbol{e}}.