2.2 Linjärt beroende och oberoende

SamverkanLinalgLIU

Version från den 21 juni 2011 kl. 07.51; Geoba (Diskussion | bidrag)
Hoppa till: navigering, sök
       2.1          2.2          2.3      


Läs textavsnitt 2.2 Linjärt beroende och oberoende.

alt=Alt textBildinformation

Du har nu läst definitionen på linärt beroende och här kommer några övningar som testar om du har tagit till dig stoffet.


Innehåll

Övning 3.12

Avgör vilka av följande följder av rumsvektorer som är linjärt oberoende

a) \displaystyle \begin{pmatrix}1\\1\\1\end{pmatrix},\ \begin{pmatrix}3\\1\\2\end{pmatrix} b) \displaystyle \begin{pmatrix}1\\1\\1\end{pmatrix},\ \begin{pmatrix}3\\1\\2\end{pmatrix},\ \begin{pmatrix}0\\2\\1\end{pmatrix} c) \displaystyle \begin{pmatrix}0\\1\\1\end{pmatrix},\ \begin{pmatrix}1\\0\\1\end{pmatrix},\ \begin{pmatrix}1\\1\\0\end{pmatrix}



Övning 3.13

Ligger vektorerna \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\-2\\1\end{pmatrix}, \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\-1\\-1\end{pmatrix} och \displaystyle \boldsymbol{w}=\underline{\boldsymbol{e}}\begin{pmatrix}-1\\-4\\5\end{pmatrix} i samma plan?