16. Linjära avbildningar
SamverkanLinalgLIU
16.1 Definition av linjär avbildning
16.6 Sammansatta linjära avbildningar
16.7 Nollrum, Värderum och dimensionssatsen
16.9 Linjära avbildningar och basbyte
16.10 Projektioner och speglingar med basbyte
Linjära avbildningar och basbyte
Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 9.pdf
Övningar
1. Den linjära avbildningen R2
=
1
2




Ange








Ange också sambandet mellan koordinaterna i de båda baserna.
2. Låt =
1
2
3





i denna bas. Vad är matrisen för













3. Avbildningen





Bestäm











4. Antag att =
1
2
3
R3












Bestäm matrisen till =
1
2
3











5. Visa att matriserna








ej kan representera samma linjära avbildning R3
Projektioner och speglingar med basbyte
Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 10.pdf
Övningar
1. Låt =
1
2
=
1
2











Låt
2. Låt \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en ON-bas i planet. Inför en ny bas \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2\} genom
\left\{\begin{array}{lcl}\boldsymbol{f}_1&=&\frac{1}{\sqrt5}(\boldsymbol{e}_1+2\boldsymbol{e}_2)\\ \boldsymbol{f}_2&=&\frac{1}{\sqrt5}(2\boldsymbol{e}_1-\boldsymbol{e}_2)\end{array}\right.
Låt \displaystyle F vara spegling i linjen \displaystyle x_1+2x_2=0. Ange \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{f}} och beräkna med hjälp av bassambandet \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{e}}.
3. Låt \displaystyle \underline{\boldsymbol{e}} vara en ON-bas i rummet och låt \displaystyle F vara en ortogonal projektion på planet \displaystyle x_1+x_2+x_3=0. Välj en lämplig ny bas \displaystyle \underline{\boldsymbol{f}} och ange \displaystyle F:s matris i denna. Beräkna med hjälp av bassambanden matrisen i basen \displaystyle \underline{\boldsymbol{e}}.
Rotationer
Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 11.pdf
Övningar
1. Låt \displaystyle \underline{\boldsymbol{e}} vara en höger ON-bas i rummet och \displaystyle F rotation \displaystyle 2\pi/3 i positiv led runt
\displaystyle \boldsymbol{e}_1+\boldsymbol{e}_2+\boldsymbol{e}_3.
Beräkna avbildningens matris i basen \displaystyle \underline{\boldsymbol{e}}.