2.3 Bas

SamverkanLinalgLIU

Version från den 19 augusti 2010 kl. 07.43; Geoba (Diskussion | bidrag)
Hoppa till: navigering, sök
       2.1          2.2          2.3      


Läs textavsnitt 2.3 Bas.

Du har nu läst definitionen på bas och här kommer några övningar som testar om du har tagit till dig stoffet.




Övning 3.17

Visa att

\displaystyle

\left\{\begin{array}{lcl} \boldsymbol{f}_1&=&\boldsymbol{e}_2+\boldsymbol{e}_3\\ \boldsymbol{f}_1&=&-\boldsymbol{e}_1+2\boldsymbol{e}_2+\boldsymbol{e}_3\\ \boldsymbol{f}_2&=&\boldsymbol{e}_1+2\boldsymbol{e}_3\end{array}\right.

är en bas för rummet. Vilka vektorer har samma koordinater i de båda baserna?


Övning 3.18

Vi vet att \displaystyle |\boldsymbol{u}|=3, \displaystyle |\boldsymbol{v}|=4 och \displaystyle |\boldsymbol{u-v}|=5. Beräkna skalärprodukten \displaystyle \boldsymbol{u}\cdot\boldsymbol{v}.