16.2 Matrisframställning
SamverkanLinalgLIU
Rad 51: | Rad 51: | ||
Tips 3|Tips 3 till övning 3| | Tips 3|Tips 3 till övning 3| | ||
Lösning|Lösning till övning 3}} | Lösning|Lösning till övning 3}} | ||
- | + | {{#NAVCONTENT: | |
+ | Svar|Svar till övning 3| | ||
+ | Tips och lösning|Tips och lösning till övning 3}} | ||
4. Bestäm matrisen till den linjära avbildningen <math>{\color{Blue}F}:{\bf R^3}\rightarrow{\bf R}^3</math> som i basen <math>\underline{\boldsymbol{e}}</math> ges av | 4. Bestäm matrisen till den linjära avbildningen <math>{\color{Blue}F}:{\bf R^3}\rightarrow{\bf R}^3</math> som i basen <math>\underline{\boldsymbol{e}}</math> ges av | ||
<center><math> | <center><math> | ||
Rad 63: | Rad 65: | ||
Tips 3|Tips 3 till övning 4| | Tips 3|Tips 3 till övning 4| | ||
Lösning|Lösning till övning 4}} | Lösning|Lösning till övning 4}} | ||
- | + | {{#NAVCONTENT: | |
+ | Svar|Svar till övning 4| | ||
+ | Tips och lösning|Tips och lösning till övning 4}} | ||
5. Låt <math>\underline{\boldsymbol{e}}</math> vara en bas för <math>V$, där dim <math>V=2</math>. | 5. Låt <math>\underline{\boldsymbol{e}}</math> vara en bas för <math>V$, där dim <math>V=2</math>. | ||
Ange matrisen för den linjära avbildning, <math>F</math>, som byter plats på <math>\boldsymbol{e}_1+2\boldsymbol{e}_2</math> och <math>2\boldsymbol{e}_1+\boldsymbol{e}_2</math>. | Ange matrisen för den linjära avbildning, <math>F</math>, som byter plats på <math>\boldsymbol{e}_1+2\boldsymbol{e}_2</math> och <math>2\boldsymbol{e}_1+\boldsymbol{e}_2</math>. | ||
Rad 74: | Rad 78: | ||
Tips 3|Tips 3 till övning 5| | Tips 3|Tips 3 till övning 5| | ||
Lösning|Lösning till övning 5}} | Lösning|Lösning till övning 5}} | ||
- | + | {{#NAVCONTENT: | |
+ | Svar|Svar till övning 5| | ||
+ | Tips och lösning|Tips och lösning till övning 5}} | ||
6. Låt <math>\underline{\boldsymbol{e}}</math> vara en ON-bas i rummet och låt | 6. Låt <math>\underline{\boldsymbol{e}}</math> vara en ON-bas i rummet och låt | ||
<center><math>F(\boldsymbol{u})=\boldsymbol{u}\times\boldsymbol{a},</math></center> | <center><math>F(\boldsymbol{u})=\boldsymbol{u}\times\boldsymbol{a},</math></center> | ||
Rad 87: | Rad 93: | ||
Tips 3|Tips 3 till övning 6| | Tips 3|Tips 3 till övning 6| | ||
Lösning|Lösning till övning 6}} | Lösning|Lösning till övning 6}} | ||
- | + | {{#NAVCONTENT: | |
+ | Svar|Svar till övning 6| | ||
+ | Tips och lösning|Tips och lösning till övning 6}} | ||
Versionen från 8 oktober 2008 kl. 11.30
Läs textavsnitt 16.2 Matrisframställning Bild:Kap16 2.pdf
Övningar
1. Låt \displaystyle \{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en bas i \displaystyle {\bf R}^2. Bestäm matrisen för den linjära avbildningen \displaystyle F:{\bf R}^2\rightarrow:{\bf R}^2, sådan att
Du ska nu testa rimligheten i svaret. Avbildningsmatrisen skriver Du i Maple enligt
> A:=matrix(2,2,[-13,11,-14,12]); Den första urbilden skriver Du som > u1:=matrix(2,1,[3,4]); Använd nu multiplikations kommandot för att bestämma första bilden > v1=multiply(A,u1);
Räknar Maple rätt?
Kontrollera nu den andra urbilden!
2. Bestäm matrisen till den linjära avbildningen \displaystyle F:{\bf R^3}\rightarrow{\bf R}^3 som i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} definieras genom
3. Den linjära avbildningen \displaystyle F:{\bf R^3}\rightarrow{\bf R}^3 har i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} matrisen
a) Bestäm bilden \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\left(\begin{array}{r} 2\\-1 \\ 3\end{array}\right) under \displaystyle F. b) Ange urbilden till \displaystyle \boldsymbol{v}=2\boldsymbol{e}_1+5\boldsymbol{e}_2+2\boldsymbol{e}_3 under \displaystyle F.
4. Bestäm matrisen till den linjära avbildningen \displaystyle {\color{Blue}F}:{\bf R^3}\rightarrow{\bf R}^3 som i basen \displaystyle \underline{\boldsymbol{e}} ges av
- Visa att \displaystyle F är linjär.
- Bestäm \displaystyle F^{-1}:s matris i basen \displaystyle \underline{\boldsymbol{e}}
5. Låt \displaystyle \underline{\boldsymbol{e}} vara en bas för \displaystyle V$, där dim . Ange matrisen för den linjära avbildning, \displaystyle F, som byter plats på \displaystyle \boldsymbol{e}_1+2\boldsymbol{e}_2 och \displaystyle 2\boldsymbol{e}_1+\boldsymbol{e}_2. Bestäm sedan vektorer \displaystyle \boldsymbol{f}_1, \displaystyle \boldsymbol{f}_2 sådan att \displaystyle F(\boldsymbol{f}_1)=\boldsymbol{f}_1 och \displaystyle F(\boldsymbol{f}_2)=-\boldsymbol{f}_2. Välj \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{e}_1,\boldsymbol{f}_2\} som bas. Ange \displaystyle F:s matris i denna bas.
6. Låt \displaystyle \underline{\boldsymbol{e}} vara en ON-bas i rummet och låt
där \displaystyle \boldsymbol{a}=\boldsymbol{e}_1+2\boldsymbol{e}_2+2\boldsymbol{e}_3.
- Bestäm \displaystyle F:s matris i denna bas.
- Vektorerna
Reflektionsuppgifter
1. Finns det linjära avbildningar som inte kan skrivas med hjälp av matriser? Motivera ditt svar med lämplig teori.
2. Beskriv hur avbildningsmatrisen för en linjär avbildning är uppbyggd, både vad gäller storlek och innehåll.
3. Är det rimligt att tänk sig att alla avbildningsmatriser för linjära avbildningar är inverterbara?