16.2 Matrisframställning
SamverkanLinalgLIU
(Lagt in navigeringstabbar) |
|||
Rad 1: | Rad 1: | ||
+ | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
+ | | style="border-bottom:1px solid #797979" width="5px" | | ||
+ | {{Mall:Ej vald flik|[[16.1 Definition av linjär avbildning|16.1]]}} | ||
+ | {{Mall:Vald flik|[[16.2 Matrisframställning|16.2]]}} | ||
+ | {{Mall:Ej vald flik|[[16.3 Projektion och spegling|16.3]]}} | ||
+ | {{Mall:Ej vald flik|[[16.4 Plan rotation|16.4]]}} | ||
+ | {{Mall:Ej vald flik|[[16.5 Rotation i rummet|16.5]]}} | ||
+ | {{Mall:Ej vald flik|[[16.6 Sammansatta linjära avbildningar|16.6]]}} | ||
+ | {{Mall:Ej vald flik|[[16.7 Nollrum, Värderum och dimensionssatsen|16.7]]}} | ||
+ | {{Mall:Ej vald flik|[[16.8 Basbyte|16.8]]}} | ||
+ | {{Mall:Ej vald flik|[[16.9 Linjära avbildningar och basbyte|16.9]]}} | ||
+ | {{Mall:Ej vald flik|[[16.10 Projektioner och speglingar med basbyte|16.10]]}} | ||
+ | {{Mall:Ej vald flik|[[16.11 Rotationer|16.11]]}} | ||
+ | | style="border-bottom:1px solid #797979" width="100%"| | ||
+ | |} | ||
+ | |||
+ | |||
Läs textavsnitt [http://wiki.math.se/wikis/samverkan/linalg-LIU/img_auth.php/7/79/Kap16_2.pdf 16.2 Matrisframställning] | Läs textavsnitt [http://wiki.math.se/wikis/samverkan/linalg-LIU/img_auth.php/7/79/Kap16_2.pdf 16.2 Matrisframställning] | ||
Rad 6: | Rad 23: | ||
17.5. Låt <math>\{\boldsymbol{e}_1, \boldsymbol{e}_2\}</math> vara en bas i <math>{\bf R}^2</math>. Bestäm matrisen för den linjära avbildningen <math>F:{\bf R}^2\rightarrow:{\bf R}^2</math>, sådan att | 17.5. Låt <math>\{\boldsymbol{e}_1, \boldsymbol{e}_2\}</math> vara en bas i <math>{\bf R}^2</math>. Bestäm matrisen för den linjära avbildningen <math>F:{\bf R}^2\rightarrow:{\bf R}^2</math>, sådan att | ||
- | <center><math>F(3\boldsymbol{e}_1+4\boldsymbol{e}_2)=5\boldsymbol{e}_1+6\boldsymbol{e}_2,\qquad F(2\boldsymbol{e}_1+3\boldsymbol{e}_2)=7\boldsymbol{e}_1+8\boldsymbol{e}_2</math></center> | + | <center><math>F(3\boldsymbol{e}_1+4\boldsymbol{e}_2)=5\boldsymbol{e}_1+6\boldsymbol{e}_2,\qquad F(2\boldsymbol{e}_1+3\boldsymbol{e}_2)=7\boldsymbol{e}_1+8\boldsymbol{e}_2</math></center><!-- |
- | {{#NAVCONTENT: | + | -->{{#NAVCONTENT: |
Svar|Svar till övning 17.5| | Svar|Svar till övning 17.5| | ||
Tips och lösning|Tips och lösning till övning 17.5}} | Tips och lösning|Tips och lösning till övning 17.5}} | ||
Rad 15: | Rad 32: | ||
17.6. Den linjära avbildningen <math>F:{\bf R^3}\rightarrow{\bf R}^3</math> har i basen <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\}</math> matrisen | 17.6. Den linjära avbildningen <math>F:{\bf R^3}\rightarrow{\bf R}^3</math> har i basen <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\}</math> matrisen | ||
<center><math> A=\left(\begin{array}{rrr}0&1&2\\5&-1&0\\4&0&-2\end{array}\right)</math></center> | <center><math> A=\left(\begin{array}{rrr}0&1&2\\5&-1&0\\4&0&-2\end{array}\right)</math></center> | ||
- | a) Bestäm bilden <math>\boldsymbol{u}=\underline{\boldsymbol{e}}\left(\begin{array}{r} 2\\-1 \\ 3\end{array}\right)</math> under <math>F</math>. b) Ange urbilden till <math> \boldsymbol{v}=2\boldsymbol{e}_1+5\boldsymbol{e}_2+2\boldsymbol{e}_3</math> under <math>F</math>. | + | a) Bestäm bilden <math>\boldsymbol{u}=\underline{\boldsymbol{e}}\left(\begin{array}{r} 2\\-1 \\ 3\end{array}\right)</math> under <math>F</math>. b) Ange urbilden till <math> \boldsymbol{v}=2\boldsymbol{e}_1+5\boldsymbol{e}_2+2\boldsymbol{e}_3</math> under <math>F</math>.<!-- |
- | {{#NAVCONTENT: | + | -->{{#NAVCONTENT: |
Svar|Svar till övning 17.6| | Svar|Svar till övning 17.6| | ||
Tips och lösning|Tips och lösning till övning 17.6}} | Tips och lösning|Tips och lösning till övning 17.6}} | ||
Rad 24: | Rad 41: | ||
17.7. Bestäm matrisen till den linjära avbildningen <math>F:{\bf R^3}\rightarrow{\bf R}^3</math> som i basen <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\}</math> definieras genom | 17.7. Bestäm matrisen till den linjära avbildningen <math>F:{\bf R^3}\rightarrow{\bf R}^3</math> som i basen <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\}</math> definieras genom | ||
<center><math> F(\boldsymbol{e}_1+\boldsymbol{e}_2)=2\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad F(\boldsymbol{e}_2)=-\boldsymbol{e}_1+2\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad | <center><math> F(\boldsymbol{e}_1+\boldsymbol{e}_2)=2\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad F(\boldsymbol{e}_2)=-\boldsymbol{e}_1+2\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad | ||
- | F(\boldsymbol{e}_2+\boldsymbol{e}_3)=2\boldsymbol{e}_1+\boldsymbol{e}_2+5\boldsymbol{e}_3. </math></center> | + | F(\boldsymbol{e}_2+\boldsymbol{e}_3)=2\boldsymbol{e}_1+\boldsymbol{e}_2+5\boldsymbol{e}_3. </math></center><!-- |
- | {{#NAVCONTENT: | + | -->{{#NAVCONTENT: |
Svar|Svar till övning 17.7| | Svar|Svar till övning 17.7| | ||
Tips och lösning|Tips och lösning till övning 17.7}} | Tips och lösning|Tips och lösning till övning 17.7}} | ||
Rad 34: | Rad 51: | ||
Ange matrisen för den linjära avbildning, <math>F</math>, som byter plats på <math>\boldsymbol{e}_1+2\boldsymbol{e}_2</math> och <math>2\boldsymbol{e}_1+\boldsymbol{e}_2</math>. | Ange matrisen för den linjära avbildning, <math>F</math>, som byter plats på <math>\boldsymbol{e}_1+2\boldsymbol{e}_2</math> och <math>2\boldsymbol{e}_1+\boldsymbol{e}_2</math>. | ||
Bestäm sedan vektorer <math>\boldsymbol{f}_1</math>, <math>\boldsymbol{f}_2</math> sådan att <math>F(\boldsymbol{f}_1)=\boldsymbol{f}_1</math> och <math>F(\boldsymbol{f}_2)=-\boldsymbol{f}_2</math>. | Bestäm sedan vektorer <math>\boldsymbol{f}_1</math>, <math>\boldsymbol{f}_2</math> sådan att <math>F(\boldsymbol{f}_1)=\boldsymbol{f}_1</math> och <math>F(\boldsymbol{f}_2)=-\boldsymbol{f}_2</math>. | ||
- | Välj <math>\underline{\boldsymbol{f}}=\{\boldsymbol{e}_1,\boldsymbol{f}_2\}</math> som bas. Ange <math>F</math>:s matris i denna bas. | + | Välj <math>\underline{\boldsymbol{f}}=\{\boldsymbol{e}_1,\boldsymbol{f}_2\}</math> som bas. Ange <math>F</math>:s matris i denna bas.<!-- |
- | {{#NAVCONTENT: | + | |
+ | -->{{#NAVCONTENT: | ||
Svar|Svar till övning 17.8| | Svar|Svar till övning 17.8| | ||
Tips och lösning|Tips och lösning till övning 17.8}} | Tips och lösning|Tips och lösning till övning 17.8}} | ||
Rad 45: | Rad 63: | ||
# Bestäm <math>F</math>:s matris i denna bas. | # Bestäm <math>F</math>:s matris i denna bas. | ||
# Vektorerna | # Vektorerna | ||
- | <center><math>\boldsymbol{f}_1=\frac{1}{3}\boldsymbol{a},\qquad\boldsymbol{f}_2=\frac{1}{3}(2\boldsymbol{e}_1-2\boldsymbol{e}_2+\boldsymbol{e}_3),\qquad \boldsymbol{f}_3=\frac{1}{3}(2\boldsymbol{e}_1+\boldsymbol{e}_2-2\boldsymbol{e}_3).</math></center> utgör en ny bas. Bestäm <math>F</math>:s matris i den nya basen <math>\underline{\boldsymbol{f}}=<math>\{\boldsymbol{f}_1, \boldsymbol{f}_2,\boldsymbol{f}_3\}</math> | + | <center><math>\boldsymbol{f}_1=\frac{1}{3}\boldsymbol{a},\qquad\boldsymbol{f}_2=\frac{1}{3}(2\boldsymbol{e}_1-2\boldsymbol{e}_2+\boldsymbol{e}_3),\qquad \boldsymbol{f}_3=\frac{1}{3}(2\boldsymbol{e}_1+\boldsymbol{e}_2-2\boldsymbol{e}_3).</math></center> utgör en ny bas. Bestäm <math>F</math>:s matris i den nya basen <math>\underline{\boldsymbol{f}}=<math>\{\boldsymbol{f}_1, \boldsymbol{f}_2,\boldsymbol{f}_3\}</math><!-- |
- | {{#NAVCONTENT: | + | |
+ | -->{{#NAVCONTENT: | ||
Svar|Svar till övning 17.9| | Svar|Svar till övning 17.9| | ||
Tips och lösning|Tips och lösning till övning 17.9}} | Tips och lösning|Tips och lösning till övning 17.9}} |
Nuvarande version
16.1 | 16.2 | 16.3 | 16.4 | 16.5 | 16.6 | 16.7 | 16.8 | 16.9 | 16.10 | 16.11 |
Läs textavsnitt 16.2 Matrisframställning
Övningar
17.5. Låt \displaystyle \{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en bas i \displaystyle {\bf R}^2. Bestäm matrisen för den linjära avbildningen \displaystyle F:{\bf R}^2\rightarrow:{\bf R}^2, sådan att
17.6. Den linjära avbildningen \displaystyle F:{\bf R^3}\rightarrow{\bf R}^3 har i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} matrisen
a) Bestäm bilden \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\left(\begin{array}{r} 2\\-1 \\ 3\end{array}\right) under \displaystyle F. b) Ange urbilden till \displaystyle \boldsymbol{v}=2\boldsymbol{e}_1+5\boldsymbol{e}_2+2\boldsymbol{e}_3 under \displaystyle F.
17.7. Bestäm matrisen till den linjära avbildningen \displaystyle F:{\bf R^3}\rightarrow{\bf R}^3 som i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} definieras genom
17.8. Låt \displaystyle \underline{\boldsymbol{e}} vara en bas för \displaystyle V., där dim \displaystyle V=2.
Ange matrisen för den linjära avbildning, \displaystyle F, som byter plats på \displaystyle \boldsymbol{e}_1+2\boldsymbol{e}_2 och \displaystyle 2\boldsymbol{e}_1+\boldsymbol{e}_2.
Bestäm sedan vektorer \displaystyle \boldsymbol{f}_1, \displaystyle \boldsymbol{f}_2 sådan att \displaystyle F(\boldsymbol{f}_1)=\boldsymbol{f}_1 och \displaystyle F(\boldsymbol{f}_2)=-\boldsymbol{f}_2.
Välj \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{e}_1,\boldsymbol{f}_2\} som bas. Ange \displaystyle F:s matris i denna bas.
17.9. Låt \displaystyle \underline{\boldsymbol{e}} vara en högerorienterad ON-bas i rummet och låt
där \displaystyle \boldsymbol{a}=\boldsymbol{e}_1+2\boldsymbol{e}_2+2\boldsymbol{e}_3.
- Bestäm \displaystyle F:s matris i denna bas.
- Vektorerna
Reflektionsuppgifter
1. Finns det linjära avbildningar som inte kan skrivas med hjälp av matriser? Motivera ditt svar med lämplig teori.
2. Beskriv hur avbildningsmatrisen för en linjär avbildning är uppbyggd, både vad gäller storlek och innehåll.
3. Är det rimligt att tänk sig att alla avbildningsmatriser för linjära avbildningar är inverterbara?
4. Tänk efter vilka av uppgifterna ovan som det går lätt att pröva svaret på.