2.3 Bas

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Nuvarande version (16 november 2010 kl. 16.28) (redigera) (ogör)
 
Rad 13: Rad 13:
-
 
+
__TOC__
<div class="ovning">
<div class="ovning">
===Övning 3.14===
===Övning 3.14===

Nuvarande version

       2.1          2.2          2.3      


Läs textavsnitt 2.3 Bas.

Du har nu läst definitionen på bas och här kommer några övningar som testar om du har tagit till dig stoffet.


Innehåll

Övning 3.14

Visa att vektorn \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\-7\\1\end{pmatrix} ligger i samma plan som vektorerna \displaystyle \boldsymbol{v}_1=\underline{\boldsymbol{e}}\begin{pmatrix}2\\-1\\3\end{pmatrix} och \displaystyle \boldsymbol{v}_2=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\2\end{pmatrix}. Bestäm koordinaterna för \displaystyle \boldsymbol{u} i basen \displaystyle \{\boldsymbol{v}_{1},\boldsymbol{v}_{2}\}.



Övning 3.15

Visa att

\displaystyle

\left\{\begin{array}{lcl}\boldsymbol{f}_1&=&-\boldsymbol{e}_1+2\boldsymbol{e}_2\\ \boldsymbol{f}_2&=&3\boldsymbol{e}_1+4\boldsymbol{e}_2\end{array}\right.

är en bas och bestäm koordinaterna för \displaystyle \boldsymbol{u}=4\boldsymbol{e}_1+2\boldsymbol{e}_2 i basen \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_{1},\boldsymbol{f}_{2}\}.



Övning 3.16

Visa att

\displaystyle

\left\{\begin{array}{lcl} \boldsymbol{f}_1&=&\boldsymbol{e}_1+\boldsymbol{e}_2\\ \boldsymbol{f}_2&=&\boldsymbol{e}_1+\boldsymbol{e}_2-\boldsymbol{e}_3\\ \boldsymbol{f}_3&=&\boldsymbol{e}_2-\boldsymbol{e}_3\end{array}\right.

är en bas och bestäm koordinaterna för \displaystyle \boldsymbol{u}=2\boldsymbol{e}_1+3\boldsymbol{e}_2-2\boldsymbol{e}_3 i basen \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_{1},\boldsymbol{f}_{2},\boldsymbol{f}_3\}.



Övning 3.17

Visa att

\displaystyle

\left\{\begin{array}{lcl} \boldsymbol{f}_1&=&\boldsymbol{e}_2+\boldsymbol{e}_3\\ \boldsymbol{f}_2&=&-\boldsymbol{e}_1+2\boldsymbol{e}_2+\boldsymbol{e}_3\\ \boldsymbol{f}_3&=&\boldsymbol{e}_1+2\boldsymbol{e}_3\end{array}\right.

är en bas för rummet. Vilka vektorer har samma koordinater i de båda baserna?


Övning 3.18

Låt \displaystyle \boldsymbol{f}_1=\boldsymbol{e}_1+\boldsymbol{e}_2 och \displaystyle \boldsymbol{f}_2=\boldsymbol{e}_1+\boldsymbol{e}_2-\boldsymbol{e}_3 som i Övning 3.16.

a) Ange alla vektorer \displaystyle \boldsymbol{f}_3 så att \displaystyle \boldsymbol{f}_1, \displaystyle \boldsymbol{f}_2 och \displaystyle \boldsymbol{f}_3 blir en ny bas för rummet.

b) Av alla vektorer \displaystyle \boldsymbol{f}_3 i a), hur ska \displaystyle \boldsymbol{f}_3 väljas så att vektorn \displaystyle \boldsymbol{u}=\boldsymbol{e}_1-3\boldsymbol{e}_2+\boldsymbol{e}_3 har koordinaterna \displaystyle \boldsymbol{u}=2\boldsymbol{f}_1+3\boldsymbol{f}_2-2\boldsymbol{f}_3 i den nya basen?