16. Linjära avbildningar

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 26: Rad 26:
- 
- 
- 
-
=== Plan rotation ===
 
- 
-
Läs textavsnittet om definition av matrisframställning för en linjär avbildning [[Bild:Kap16_4.pdf||center]]
 
- 
-
'''Övningar'''
 
- 
-
1. Låt <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\}</math> vara en ON-bas i planet. Bestäm matrisen i basen <math>\underline{\boldsymbol{e}}</math> för följande linjära avbildningar:
 
-
# rotation ett kvarts varv i positiv led (dvs <math>\boldsymbol{e}_1</math> till <math>\boldsymbol{e}_2</math>).
 
-
# rotation vinkeln <math>\pi/6</math> i negatitv led (dvs <math>\boldsymbol{e}_2</math> till <math>\boldsymbol{e}_1</math>).
 
-
{{#NAVCONTENT:
 
-
Svar|Svar till övning 5|
 
-
Tips 1|Tips 1 till övning 17.21|
 
-
Tips 2|Tips 2 till övning 17.21|
 
-
Tips 3|Tips 3 till övning 17.21|
 
-
Lösning|Lösning till övning 17.21}}
 
- 
- 
- 
-
=== Rotation i rummet ===
 
- 
-
Läs textavsnittet om definition av matrisframställning för en linjär avbildning [[Bild:Kap16_5.pdf||center]]
 
- 
-
'''Övningar'''
 
- 
-
1. Givet en höger ON-bas i rummet. Följande matriser definierar linjära avbildningar i rummet. Beskriv geometriskt vad dessa gör.
 
-
<center><math>
 
-
A_1=\left(\begin{array}{rrr} 1&0 & 0\\ 0& 0& 0\\ 0& 0& 1\end{array}\right)\qquad
 
-
A_2=\left(\begin{array}{rrr} 1& 0& 0\\ 0& 3& 0\\ 0& 0& 1\end{array}\right)\qquad
 
-
A_3=\left(\begin{array}{rrr} 1& 0& 0\\ 0& \cos\theta& -\sin\theta\\ 0& \sin\theta& \cos\theta\end{array}\right)
 
-
</math></center>
 
-
{{#NAVCONTENT:
 
-
Svar|Svar till övning 5|
 
-
Tips 1|Tips 1 till övning 17.21|
 
-
Tips 2|Tips 2 till övning 17.21|
 
-
Tips 3|Tips 3 till övning 17.21|
 
-
Lösning|Lösning till övning 17.21}}
 
- 
- 
-
2. Låt <math>\underline{\boldsymbol{e}}</math> vara en höger-ON-bas i rummet och <math>F</math> rotation <math>2\pi/3</math> i positiv led runt
 
-
<math>\boldsymbol{e}_1+\boldsymbol{e}_2+\boldsymbol{e}_3</math>. Beräkna avbildningens matris i basen <math>\underline{\boldsymbol{e}}</math>.
 
-
{{#NAVCONTENT:
 
-
Svar|Svar till övning 5|
 
-
Tips 1|Tips 1 till övning 17.21|
 
-
Tips 2|Tips 2 till övning 17.21|
 
-
Tips 3|Tips 3 till övning 17.21|
 
-
Lösning|Lösning till övning 17.21}}
 
=== Sammansatta linjära avbildningar ===
=== Sammansatta linjära avbildningar ===

Versionen från 15 augusti 2008 kl. 10.29

16.1 Definition av linjär avbildning

16.2 Matrisframställning

16.3 Projektion och spegling

16.4 Plan rotation

16.5 Rotation i rummet

16.6 Sammansatta linjära avbildningar

16.7 Nollrum, Värderum och dimensionssatsen

16.8 Basbyte

16.9 Linjära avbildningar och basbyte

16.10 Projektioner och speglingar med basbyte

16.11 Rotationer




Innehåll

Sammansatta linjära avbildningar

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 6.pdf

Övningar

1. Låt \displaystyle \underline{\boldsymbol{e}} vara en bas för \displaystyle V, där dim \displaystyle V=2. Antag att \displaystyle F:V\rightarrow V är en linjär avbildning som uppfyller

\displaystyle \left\{\begin{array}{lcr}F(\boldsymbol{e}_1)&=&\frac{1}{\sqrt2}(\boldsymbol{e}_1+\boldsymbol{e}_2)\\ F(\boldsymbol{e}_2)&=&\frac{1}{\sqrt2}(-\boldsymbol{e}_1+\boldsymbol{e}_2)\end{array}\right.

Bestäm matrisen för \displaystyle F^2 i basen \displaystyle \underline{\boldsymbol{e}}.



Nollrum, Värderum och dimensionssatsen

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 7.pdf

Övningar


1. Låt \displaystyle F vara en avbildning på rummet som i basen \displaystyle \boldsymbol{e} ges av matrisen

\displaystyle A=\left(\begin{array}{rrr} 3& -1& -1\\ 2& 0& -1\\ 4& -2& -1\end{array}\right).

Bestäm \displaystyle N(F) och \displaystyle V(F). Visa \displaystyle N(F)\cap V(F)=\boldsymbol{0}. Hur avbildas vektorerna i och \displaystyle V(F)?


2. Avbildningen \displaystyle F på rummet ges i ON-basen \displaystyle \boldsymbol{e} av matrisen

\displaystyle \left(\begin{array}{rrr} 2& -1& -1\\ 1& 0& -1\\ 1& -1&0 \end{array}\right)

och \displaystyle G är ortogonal projektion på linjen \displaystyle \underline{\boldsymbol{e}}[(1,1,1)]^t. Bestäm Visa \displaystyle V(F)\cap N(G).


3. Avbildningen \displaystyle F på rummet ges i ON-basen \displaystyle \boldsymbol{e} av matrisen

\displaystyle \left(\begin{array}{rrr} 1& -2& 1\\ 1& -3& 2\\ 1& 2&-3 \end{array}\right).

Bestäm baser för \displaystyle N(F), \displaystyle V(F), \displaystyle N(F)\cap V(F), \displaystyle N(F^2) och \displaystyle V(F^2).


4. Givet en ON-bas \displaystyle \underline{\boldsymbol{e}} i \displaystyle {\bf E}^3. I denna bas ges avbildningen \displaystyle F av matrisen

\displaystyle \frac{1}{3}\left(\begin{array}{rrr} -2& 1& 1\\ 1& -2& 1\\ 1& 1&-2 \end{array}\right).

Inför en ny bas bestående av vektorer ur \displaystyle N(F) och \displaystyle V(F). Ange sambandet för \displaystyle F i den nya basen. Tolka \displaystyle F geometriskt.


5. Låt \displaystyle M_{22} vara vektorrummet av alla \displaystyle 2\times matriser. Definiera avbildningen \displaystyle F genom

\displaystyle F(A)=\left(\begin{array}{rr} 1&1 \\0 &0 \end{array}\right)A+A\left(\begin{array}{rr} 0&0 \\ 1& 1\end{array}\right).
  1. Visa att \displaystyle F är en linjär avbildning på \displaystyle M_{22} .
  2. Bestäm dim \displaystyle N(F) samt en bas i \displaystyle N(F)


6. Konstruera en matris som representerar en linjär avbildning \displaystyle F:{\bf R}^3\rightarrow{\bf R}^3 med

\displaystyle N(F)=[(1,1,1)^t]

och

\displaystyle V(F)=[(1,0,0)^t,(1,1,0)^t].


7. Den linjära avbildningen \displaystyle F:{\bf R}^3\rightarrow{\bf R}^3 ges i en given bas av matrisen

\displaystyle \left(\begin{array}{ccc} 1& a+3& a\\ a& 3a+1& 1\\ 2& 4a+4& a+1\end{array}\right),\qquad a\in{\bf R}

Ange alla reella tal \displaystyle a sådana att dim \displaystyle V(F)=1 och ange i så fall en bas för \displaystyle V(F).


8. Den linjära avbildningen \displaystyle F:{\bf R}^3\rightarrow{\bf R}^3 ges i en given bas av matrisen

\displaystyle \left(\begin{array}{ccc} 1& 1& 3\\ 2& 2& 2a\\ a& -1& 1\end{array}\right),\qquad a\in{\bf R}

Ange alla reella tal \displaystyle a sådana att \displaystyle N(F)\cap V(F)\neq\emptyset.


9. Bestäm matrisen till den linjära avbildningen \displaystyle F:{\bf R}^3\rightarrow{\bf R}^3 som i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\} avbildar de tre vektorerna \displaystyle (1,2,1)^t, \displaystyle (1,1,-1)^t och \displaystyle (-1,0,1)^t\displaystyle (1,3,1)^t, \displaystyle (3,1,2)^t resp. \displaystyle (5,-1,3)^t. Bestäm också \displaystyle V(F).



Basbyte

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 8.pdf

Övningar

1. Givet två baser \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} och \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2,\boldsymbol{f}_3\}. Ange följande bassamband

\displaystyle \left\{\begin{array}{rclclcl}

\boldsymbol{f}_1&=&\boldsymbol{e}_1&+&\boldsymbol{e}_2&+&\boldsymbol{e}_3\\ \boldsymbol{f}_2&=& & &\boldsymbol{e}_2&-&\boldsymbol{e}_3\\

\boldsymbol{f}_3&=&\boldsymbol{e}_1&+&\boldsymbol{e}_2&&\end{array}\right.

på matrisform. Ange också det omvända bassambandet samt koordinatsambanden.


2. Givet en bas \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} i planet. Vi inför en ny bas \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2\} genom att sätta \displaystyle \underline{\boldsymbol{f}}=\underline{\boldsymbol{e}}T, där \displaystyle T=\left(\begin{array}{rr} 2& 3\\ 1& 2\end{array}\right). En linje har ekvationen \displaystyle x_1+7x_2=0 i den gamla basen. Vad är dess ekvationen i den nya basen?




Linjära avbildningar och basbyte

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 9.pdf

Övningar

1. Den linjära avbildningen \displaystyle F:{\bf R}^2\rightarrow{\bf R}^2 har i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} har matrisen

\displaystyle A_{\boldsymbol{e}}=\frac{1}{2}\left(\begin{array}{rr} 1& 1\\ -1& 1\end{array}\right).

Ange \displaystyle F:s matris \displaystyle A_{\boldsymbol{f}} i basen

\displaystyle \boldsymbol{f}_1=\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad \boldsymbol{f}_2=-\boldsymbol{e}_1+\boldsymbol{e}_2.

Ange också sambandet mellan koordinaterna i de båda baserna.


2. Låt \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} var en bas i rummet och \displaystyle F en linjär avbildning med matrisen

\displaystyle A=\left(\begin{array}{rrr} 2& 0& 1\\ 1& -1& 0\\ 2& 2& 1\end{array}\right).

i denna bas. Vad är matrisen för \displaystyle F i den bas \displaystyle \underline{\boldsymbol{f}} som ges av

\displaystyle

\boldsymbol{f}_1=\boldsymbol{e}_2-\boldsymbol{e}_3,\qquad \boldsymbol{f}_2=\boldsymbol{e}_1-\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad

\boldsymbol{f}_3=-\boldsymbol{e}_1+\boldsymbol{e}_2.


3. Avbildningen \displaystyle F har i basen \displaystyle \underline{\boldsymbol{e}} matrisen

\displaystyle A=\left(\begin{array}{rrr} 2& 0& 1\\ 1& -1& 0\\ 2& 2& 1\end{array}\right).

Bestäm \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{f}} om

\displaystyle

\boldsymbol{f}_1=\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad \boldsymbol{f}_2=\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad

\boldsymbol{f}_3=\boldsymbol{e}_1.


4. Antag att \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} är en bas i \displaystyle {\bf R}^3 och låt den linjära avbildningen \displaystyle F:{\bf R}^3\rightarrow{\bf R}^3 definieras genom

\displaystyle

F(\boldsymbol{e}_1)=\boldsymbol{e}_1+2\boldsymbol{e}_3,\qquad F(\boldsymbol{e}_2)=\boldsymbol{e}_1+3\boldsymbol{e}_2+\boldsymbol{e}_3\qquad

F(\boldsymbol{e}_3)=2\boldsymbol{e}_2+\boldsymbol{e}_3.

Bestäm matrisen till \displaystyle F med avseende på basen \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2,\boldsymbol{f}_3\}, där

\displaystyle

\boldsymbol{f}_1=\boldsymbol{e}_1\qquad \boldsymbol{f}_2=\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad

\boldsymbol{f}_3=\boldsymbol{e}_1+\boldsymbol{e}_2+\boldsymbol{e}_3.


5. Visa att matriserna

\displaystyle

A=\left(\begin{array}{rrr} 0& -1& 0\\ 1& 0& 1\\ 1& 2& 3\end{array}\right)\qquad och\qquad

B=\left(\begin{array}{rrr} 1& 0& 1\\ 1& 2& 0\\ -1& 0& 3\end{array}\right)

ej kan representera samma linjära avbildning \displaystyle F:{\bf R}^3\rightarrow{\bf R}^3.




Projektioner och speglingar med basbyte

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 10.pdf

Övningar

1. Låt \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en ON-bas i planet. Inför en ny bas \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2\} genom

\displaystyle

\left\{\begin{array}{lcl}\boldsymbol{f}_1&=&\frac{1}{\sqrt5}(\boldsymbol{e}_1+2\boldsymbol{e}_2)\\ \boldsymbol{f}_2&=&\frac{1}{\sqrt5}(2\boldsymbol{e}_1-\boldsymbol{e}_2)\end{array}\right.

Låt \displaystyle F vara ortogonal projektion på linjen \displaystyle x_1+2x_2=0. Ange \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{f}} och beräkna med hjälp av bassambandet \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{e}}.


2. Låt \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en ON-bas i planet. Inför en ny bas \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2\} genom

\displaystyle

\left\{\begin{array}{lcl}\boldsymbol{f}_1&=&\frac{1}{\sqrt5}(\boldsymbol{e}_1+2\boldsymbol{e}_2)\\ \boldsymbol{f}_2&=&\frac{1}{\sqrt5}(2\boldsymbol{e}_1-\boldsymbol{e}_2)\end{array}\right.

Låt \displaystyle F vara spegling i linjen \displaystyle x_1+2x_2=0. Ange \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{f}} och beräkna med hjälp av bassambandet \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{e}}.


3. Låt \displaystyle \underline{\boldsymbol{e}} vara en ON-bas i rummet och låt \displaystyle F vara en ortogonal projektion på planet \displaystyle x_1+x_2+x_3=0. Välj en lämplig ny bas \displaystyle \underline{\boldsymbol{f}} och ange \displaystyle F:s matris i denna. Beräkna med hjälp av bassambanden matrisen i basen \displaystyle \underline{\boldsymbol{e}}.



Rotationer

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 11.pdf

Övningar


1. Låt \displaystyle \underline{\boldsymbol{e}} vara en höger ON-bas i rummet och \displaystyle F rotation \displaystyle 2\pi/3 i positiv led runt \displaystyle \boldsymbol{e}_1+\boldsymbol{e}_2+\boldsymbol{e}_3. Beräkna avbildningens matris i basen \displaystyle \underline{\boldsymbol{e}}.