Tips och lösning till U 5.1c
SamverkanLinalgLIU
Tips 1
Använd räknelagarna i sats 4.4 punkt 2 och 3.
Tips 2
Dina räkningar förenklas genom att använda att\boldsymbol{u} \times \boldsymbol{u}=\boldsymbol{v} \times \boldsymbol{v}=\boldsymbol{0}
och
\boldsymbol{v} \times \boldsymbol{u}=-\boldsymbol{u} \times \boldsymbol{v}
Tips 3
Använd vidare att du redan har beräknat \displaystyle |\boldsymbol{u}\times\boldsymbol{v}|
Lösning
Enligt räknelagarna för vektorprodukt så följer att
(2\boldsymbol{u}-3\boldsymbol{v})\times(3\boldsymbol{u}+2\boldsymbol{v})) =2\cdot3(\boldsymbol{u} \times \boldsymbol{u}) +2\cdot2(\boldsymbol{u} \times \boldsymbol{v}) -3\cdot3(\boldsymbol{v} \times \boldsymbol{u}) -3\cdot2(\boldsymbol{v} \times \boldsymbol{v})
Eftersom
\boldsymbol{u} \times \boldsymbol{u}=\boldsymbol{v} \times \boldsymbol{v}=\boldsymbol{0}
och
\boldsymbol{v} \times \boldsymbol{u}=-\boldsymbol{u} \times \boldsymbol{v}
så är
(2\boldsymbol{u}-3\boldsymbol{v})\times(3\boldsymbol{u}+2\boldsymbol{v})) =13(\boldsymbol{u}\times\boldsymbol{v}).
Alltså får vi att
|(2\boldsymbol{u}-3\boldsymbol{v})\times(3\boldsymbol{u}+2\boldsymbol{v})| =|13| \cdot |\boldsymbol{u}\times\boldsymbol{v}|=13\cdot 6=78.