Tips och lösning till U 22.2b
SamverkanLinalgLIU
Tips 1
Du skall även i detta fall beräkna en matrisprodukt.
Tips 2
Du skall beräkna \displaystyle \left( \begin{array}{rrr} 1& -1& -1 \\ -2& 0& 1 \\ 2& 2& 1 \end{array}\right) \left(\begin{array}{r} 0 \\ -1 \\ 1 \end{array}\right)
Tips 3
Efter beräkningen kan du efter lite omskrivning avläsa egenvärdet samtidigt som du har visat att vektorn var en egenvektor.
Lösning
Vektorn \displaystyle \boldsymbol{v}_2=\underline{\boldsymbol{e}} \left(\begin{array}{r} 0 \\ -1 \\ 1 \end{array}\right) är en egenvektor tillhörande egenvärde \displaystyle \lambda_2 om
F(\boldsymbol{v}_2)=\lambda_2\boldsymbol{v}_2\Leftrightarrow AX_2=\lambda_2X_2
\left( \begin{array}{rrr} 1& -1& -1 \\ -2& 0& 1 \\ 2& 2& 1 \end{array}\right) \left(\begin{array}{r} 0 \\ -1 \\ 1 \end{array}\right)=\underline{\boldsymbol{e}}\left(\begin{array}{r} 0 \\ 1 \\ -1 \end{array}\right) = (-1)\cdot\underline{\boldsymbol{e}}\left(\begin{array}{r} 0 \\ -1 \\ 1 \end{array}\right)=(-1)\cdot\boldsymbol{v}_2.
Alltså är \displaystyle \lambda_2=-1 .