2.1 Vektorgeometri
SamverkanFlervariabelanalysLIU
Rad 30: | Rad 30: | ||
b) Bestäm ekvationen för linjen genom punkterna på parameterform. | b) Bestäm ekvationen för linjen genom punkterna på parameterform. | ||
- | c) Bestäm en tangentvektor | + | c) Bestäm en tangentvektor till linjen. |
d) Bestäm en normalvektor till linjen. | d) Bestäm en normalvektor till linjen. |
Versionen från 30 augusti 2013 kl. 06.42
2.1 | 2.2 | 2.3 | 2.4 |
Övning 3.1.1
Antag att \displaystyle \boldsymbol{u}=\begin{pmatrix}1,-3,2\end{pmatrix} och \displaystyle \boldsymbol{v}=\begin{pmatrix}3,2,-2\end{pmatrix}.
a) Beräkna \displaystyle 2\boldsymbol{u}-3\boldsymbol{v}.
b) Bestäm skalärprodukten \displaystyle \boldsymbol{u}\cdot\boldsymbol{v}.
c) Beräkna längderna \displaystyle |\boldsymbol{u}| och \displaystyle |\boldsymbol{v}|.
d) Beräkna vinkeln mellan \displaystyle \boldsymbol{u} och \displaystyle \boldsymbol{v}.
Övning 3.1.2
Givet punkterna \displaystyle (1,3) och \displaystyle (-2,0).
a) Bestäm ekvationen för linjen genom punkterna på parameterfri form.
b) Bestäm ekvationen för linjen genom punkterna på parameterform.
c) Bestäm en tangentvektor till linjen.
d) Bestäm en normalvektor till linjen.
Övning 3.1.3
Bestäm ekvationen för det plan genom punkten \displaystyle (1,2,3) som innehåller vektorerna \displaystyle \boldsymbol{u}=(4,2,3) och \displaystyle \boldsymbol{v}=(0,-2,1).
Övning 3.1.4
Bestäm arean av den triangel som har hörn i punkterna \displaystyle (1,2,3), \displaystyle (1,1,1) och \displaystyle (2,-2,1).
Övning 3.1.5
Bestäm volymen av den parallellepiped som som spänns upp av vektorerna \displaystyle (1,2,3), \displaystyle (1,1,1) och \displaystyle (2,-2,1).