4. Krafter och vektorer

Förberedande Mekanik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 7: Rad 7:
|}
|}
 +
 +
== '''Key Points''' ==
<math>\begin{align}
<math>\begin{align}
Rad 12: Rad 14:
& =F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j}
& =F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j}
\end{align}</math>
\end{align}</math>
- 
- 
[[Image:TF.teori.GIF]]
[[Image:TF.teori.GIF]]
- 
- 
- 
- 
<math>F\cos \alpha </math>
<math>F\cos \alpha </math>
Rad 31: Rad 27:
<math>F\sin \alpha </math>
<math>F\sin \alpha </math>
is called the vertical component of the force.
is called the vertical component of the force.
 +
'''[[Example 4.1]]'''
'''[[Example 4.1]]'''
Rad 36: Rad 33:
Express each of the forces given below in the form a<math>\mathbf{i}</math> + b<math>\mathbf{j}</math>.
Express each of the forces given below in the form a<math>\mathbf{i}</math> + b<math>\mathbf{j}</math>.
-
(a)
+
a)
[[Image:TF4.1a.GIF]]
[[Image:TF4.1a.GIF]]
-
(b)
+
b)
[[Image:TF4.1b.GIF]]
[[Image:TF4.1b.GIF]]
Rad 46: Rad 43:
'''Solution'''
'''Solution'''
-
(a)
+
a) <math>20\cos 40{}^\circ \mathbf{i}+20\sin 40{}^\circ \mathbf{j}</math>
-
+
-
<math>20\cos 40{}^\circ \mathbf{i}+20\sin 40{}^\circ \mathbf{j}</math>
+
-
 
+
-
 
+
-
(b)
+
-
+
-
<math>-80\cos 30{}^\circ \mathbf{i}+80\sin 30{}^\circ \mathbf{j}</math>
+
 +
b) <math>-80\cos 30{}^\circ \mathbf{i}+80\sin 30{}^\circ \mathbf{j}</math>
Note the negative sign here in the first term.
Note the negative sign here in the first term.
-
 
'''[[Example 4.2]]'''
'''[[Example 4.2]]'''
Rad 66: Rad 56:
[[Image:TF4.2.GIF]]
[[Image:TF4.2.GIF]]
- 
'''Solution'''
'''Solution'''
- 
<math>28\cos 30{}^\circ \mathbf{i}-28\sin 30{}^\circ \mathbf{j}</math>
<math>28\cos 30{}^\circ \mathbf{i}-28\sin 30{}^\circ \mathbf{j}</math>
- 
Note the negative sign in the second term.
Note the negative sign in the second term.
- 
'''[[Example 4.3]]'''
'''[[Example 4.3]]'''
- 
Express the force shown below as a vector in terms of
Express the force shown below as a vector in terms of
Rad 91: Rad 76:
'''Solution'''
'''Solution'''
-
 
+
-
+
<math>-50\cos 44{}^\circ \mathbf{i}-50\sin 44{}^\circ \mathbf{j}</math>
<math>-50\cos 44{}^\circ \mathbf{i}-50\sin 44{}^\circ \mathbf{j}</math>
- 
Note that here both terms are negative.
Note that here both terms are negative.
Rad 109: Rad 92:
-
The magnitude, FN , of the force is given by,
+
The magnitude, <math>F</math> , of the force is given by,
<math>F=\sqrt{{{4}^{2}}+{{8}^{2}}}=\sqrt{80}=8.94\text{ N (to 3sf)}</math>
<math>F=\sqrt{{{4}^{2}}+{{8}^{2}}}=\sqrt{80}=8.94\text{ N (to 3sf)}</math>
Rad 122: Rad 105:
Find the magnitude and direction of the resultant of the four forces shown in the diagram.
Find the magnitude and direction of the resultant of the four forces shown in the diagram.
- 
[[Image:TF4.5.GIF]]
[[Image:TF4.5.GIF]]
- 
'''Solution'''
'''Solution'''
Rad 138: Rad 119:
| 18 N
| 18 N
|valign="top"| <math>-18\mathbf{j}</math>
|valign="top"| <math>-18\mathbf{j}</math>
- 
|-
|-
| 25 N
| 25 N
Rad 146: Rad 126:
|valign="top"|<math>-15\cos 30{}^\circ \mathbf{i}+15\sin 30{}^\circ \mathbf{j}</math>
|valign="top"|<math>-15\cos 30{}^\circ \mathbf{i}+15\sin 30{}^\circ \mathbf{j}</math>
|}
|}
- 
- 
- 
- 
- 
- 
- 
- 
- 
<math>\begin{align}
<math>\begin{align}
Rad 160: Rad 131:
& =-23.627\mathbf{i}-3.730\mathbf{j}
& =-23.627\mathbf{i}-3.730\mathbf{j}
\end{align}</math>
\end{align}</math>
- 
The magnitude is given by:
The magnitude is given by:
-
 
+
-
+
<math>\sqrt{{{23.627}^{2}}+{{3.730}^{2}}}=23.9\text{ N (to 3sf)}</math>
<math>\sqrt{{{23.627}^{2}}+{{3.730}^{2}}}=23.9\text{ N (to 3sf)}</math>
- 
- 
The angle <math>\theta </math> can be found using tan.
The angle <math>\theta </math> can be found using tan.
-
 
+
-
+
<math>\begin{align}
<math>\begin{align}
& \tan \theta =\frac{3.730}{23.627} \\
& \tan \theta =\frac{3.730}{23.627} \\
& \theta =9.0{}^\circ
& \theta =9.0{}^\circ
\end{align}</math>
\end{align}</math>
- 
[[Image:TF4.5a.GIF]]
[[Image:TF4.5a.GIF]]

Versionen från 29 januari 2010 kl. 13.05

       Theory          Exercises      


Key Points

\displaystyle \begin{align} & \mathbf{F}=F\cos \alpha \mathbf{i}+F\cos (90-\alpha )\mathbf{j} \\ & =F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j} \end{align}

Image:TF.teori.GIF

\displaystyle F\cos \alpha is one component of the force. If \displaystyle \mathbf{i} is horizontal, \displaystyle F\cos \alpha is called the horizontal component of the force.


\displaystyle F\sin \alpha is another component of the force. If \displaystyle \mathbf{j} is vertical, \displaystyle F\sin \alpha is called the vertical component of the force.


Example 4.1

Express each of the forces given below in the form a\displaystyle \mathbf{i} + b\displaystyle \mathbf{j}.

a)

Image:TF4.1a.GIF

b)

Image:TF4.1b.GIF

Solution

a) \displaystyle 20\cos 40{}^\circ \mathbf{i}+20\sin 40{}^\circ \mathbf{j}

b) \displaystyle -80\cos 30{}^\circ \mathbf{i}+80\sin 30{}^\circ \mathbf{j}

Note the negative sign here in the first term.


Example 4.2

Express the force shown below as a vector in terms of \displaystyle \mathbf{i} and \displaystyle \mathbf{j}.


Image:TF4.2.GIF

Solution

\displaystyle 28\cos 30{}^\circ \mathbf{i}-28\sin 30{}^\circ \mathbf{j}

Note the negative sign in the second term.


Example 4.3

Express the force shown below as a vector in terms of \displaystyle \mathbf{i} and \displaystyle \mathbf{j}


Image:TF4.3.GIF


Solution

\displaystyle -50\cos 44{}^\circ \mathbf{i}-50\sin 44{}^\circ \mathbf{j}

Note that here both terms are negative.


Example 4.4

Find the magnitude of the force (4\displaystyle \mathbf{i} - 8\displaystyle \mathbf{j}) N. Draw a diagram to show the direction of this force.

Solution

Image:TF4.4.GIF


The magnitude, \displaystyle F , of the force is given by,

\displaystyle F=\sqrt{{{4}^{2}}+{{8}^{2}}}=\sqrt{80}=8.94\text{ N (to 3sf)}


The angle, \displaystyle \theta , is given by,

\displaystyle \theta ={{\tan }^{-1}}\left( \frac{8}{4} \right)=63.4{}^\circ


Example 4.5

Find the magnitude and direction of the resultant of the four forces shown in the diagram.

Image:TF4.5.GIF

Solution

Force Vector Form
20 N \displaystyle 20\cos 50{}^\circ \mathbf{i}+20\sin 50{}^\circ \mathbf{j}
18 N \displaystyle -18\mathbf{j}
25 N \displaystyle -25\cos 20{}^\circ \mathbf{i}-25\sin 20{}^\circ \mathbf{j}
15 N \displaystyle -15\cos 30{}^\circ \mathbf{i}+15\sin 30{}^\circ \mathbf{j}

\displaystyle \begin{align} & \text{Resultant Force }=\text{ }\left( 20\cos 50{}^\circ -25\cos 20{}^\circ -15\cos 30{}^\circ \right)\mathbf{i}+\left( 20\sin 50{}^\circ -18-25\sin 20{}^\circ +15\sin 30{}^\circ \right)\mathbf{j} \\ & =-23.627\mathbf{i}-3.730\mathbf{j} \end{align}

The magnitude is given by:

\displaystyle \sqrt{{{23.627}^{2}}+{{3.730}^{2}}}=23.9\text{ N (to 3sf)}

The angle \displaystyle \theta can be found using tan.

\displaystyle \begin{align} & \tan \theta =\frac{3.730}{23.627} \\ & \theta =9.0{}^\circ \end{align}

Image:TF4.5a.GIF