Lösung 2.2:3d
Aus Online Mathematik Brückenkurs 2
Observe that the derivative of the denominator is, for the most part, equal to the numerator,
\displaystyle \left( x^{2}+2x+2 \right)^{\prime }=2x+2=2\left( x+1 \right)
so we can rewrite the integral as
\displaystyle \int{\frac{\frac{1}{2}}{x^{2}+2x+2}}\centerdot \left( x^{2}+2x+2 \right)^{\prime }\,dx
The substitution
\displaystyle u=x^{2}+2x+2
will therefore simplify the integral considerably:
\displaystyle \begin{align}
& \int{\frac{x+1}{x^{2}+2x+2}}\,dx=\left\{ \begin{matrix}
u=x^{2}+2x+2 \\
du=\left( x^{2}+2x+2 \right)^{\prime }\,dx=2\left( x+1 \right)\,dx \\
\end{matrix} \right\} \\
& =\frac{1}{2}\int{\frac{\,du}{u}}=\frac{1}{2}\ln \left| u \right|+C \\
& =\frac{1}{2}\ln \left| x^{2}+2x+2 \right|+C \\
\end{align}
NOTE: By completing the square
\displaystyle x^{2}+2x+2=\left( x+1 \right)^{2}-1^{2}+2=\left( x+1 \right)^{2}+1
we see that
\displaystyle x^{2}+2x+2
is always greater than or equal to
\displaystyle \text{1}, so we can take away the absolute sign around the argument in
\displaystyle \text{ln}
and answer with
\displaystyle \frac{1}{2}\ln \left( x^{2}+2x+2 \right)+C