Lösung 2.1:5a
Aus Online Mathematik Brückenkurs 2
(HINT: multiply the top and bottom by the conjugate of the denominator.)
If we multiply top and bottom of the fraction by the conjugate expression, \displaystyle \sqrt{x+9}+\sqrt{x}, then the conjugate rule gives that denominator's root is squared away:
\displaystyle \begin{align}
& \frac{1}{\sqrt{x+9}-\sqrt{x}}=\frac{1}{\sqrt{x+9}-\sqrt{x}}\centerdot \frac{\sqrt{x+9}+\sqrt{x}}{\sqrt{x+9}+\sqrt{x}} \\
& =\frac{\sqrt{x+9}+\sqrt{x}}{\left( \sqrt{x+9} \right)^{2}-\left( \sqrt{x} \right)^{2}} \\
& =\frac{\sqrt{x+9}+\sqrt{x}}{x+9-x} \\
& =\frac{\sqrt{x+9}+\sqrt{x}}{9} \\
\end{align}
Thus,
\displaystyle \int{\frac{\,dx}{\sqrt{x+9}-\sqrt{x}}}=\frac{1}{9}\int{\left( \sqrt{x+9}+\sqrt{x} \right)}\,dx
If we write the square roots in power form,
\displaystyle \frac{1}{9}\int{\left( \left( x+9 \right)^{\frac{1}{2}}+x^{\frac{1}{2}} \right)}\,dx,
we see that we have a standard integral and can write down the primitive functions directly:
\displaystyle \begin{align}
& \frac{1}{9}\int{\left( \left( x+9 \right)^{\frac{1}{2}}+x^{\frac{1}{2}} \right)}\,dx=\frac{1}{9}\left( \frac{\left( x+9 \right)^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right)+C \\
& =\frac{1}{9}\left( \frac{\left( x+9 \right)^{\frac{3}{2}}}{\frac{3}{2}}+\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right)+C \\
& =\frac{1}{9}\left( \frac{2}{3}\left( x+9 \right)^{\frac{3}{2}}+\frac{2}{3}x^{\frac{3}{2}} \right)+C \\
& =\frac{2}{27}\left( x+9 \right)^{\frac{3}{2}}+\frac{2}{27}x^{\frac{3}{2}}+C \\
& \\
\end{align},
where C is an arbitrary constant.
This can also be written with square roots as
\displaystyle \frac{2}{27}\left( x+9 \right)\sqrt{x+9}+\frac{2}{27}x\sqrt{x}+C
To be completely certain that we have everything correctly, we differentiate the answer and see if we get back the integrand:
\displaystyle \begin{align}
& \frac{d}{dx}\left( \frac{2}{27}\left( x+9 \right)^{\frac{3}{2}}+\frac{2}{27}x^{\frac{3}{2}}+C \right) \\
& =\frac{2}{27}\centerdot \frac{3}{2}\left( x+9 \right)^{\frac{3}{2}-1}+\frac{2}{27}\centerdot \frac{3}{2}x^{\frac{3}{2}-1}+0 \\
& =\frac{1}{9}\left( x+9 \right)^{\frac{1}{2}}+\frac{1}{9}x^{\frac{1}{2}} \\
\end{align}