Lösung 1.2:3d
Aus Online Mathematik Brückenkurs 2
We differentiate the function successively, one part at a time,
\displaystyle \frac{d}{dx}\sin \left\{ \left. \cos \sin x \right\} \right.=\cos \left\{ \left. \cos \sin x \right\} \right.\centerdot \left( \left\{ \left. \cos \sin x \right\} \right. \right)^{\prime },
and the next differentiation becomes
\displaystyle \begin{align}
& \frac{d}{dx}\cos \left\{ \left. \sin x \right\} \right.=-\sin \left\{ \left. \sin x \right\} \right.\centerdot \left( \sin x \right)^{\prime } \\
& =-\sin \sin x\centerdot \cos x \\
\end{align}
The answer is thus
\displaystyle \begin{align}
& \frac{d}{dx}\sin \cos \sin x=\cos \cos \sin x\centerdot \left( -\sin \sin x\centerdot \cos x \right) \\
& =-\cos \cos \sin x\centerdot \sin \sin x\centerdot \cos x \\
\end{align}