Lösung 3.4:1c
Aus Online Mathematik Brückenkurs 2
Wir addieren einen Term, sodass wir \displaystyle x^3 los werden. Wir addieren und subtrahieren daher \displaystyle ax^2,
\displaystyle \frac{x^3+a^3}{x+a} = \frac{x^3+ax^2-ax^2+a^3}{x+a}\,\textrm{.} |
Wir können jetzt den Bruch in zwei Brüche aufteilen, wo wir den einen kürzen können,
\displaystyle \begin{align}
\frac{x^3+ax^2-ax^2+a^3}{x+a} &= \frac{x^3+ax^2}{x+a} + \frac{-ax^2+a^3}{x+a}\\[5pt] &= \frac{x^2(x+a)}{x+a} + \frac{-ax^2+a^3}{x+a}\\[5pt] &= x^2 + \frac{-ax^2+a^3}{x+a}\,\textrm{.} \end{align} |
Jetzt addieren und subtrahieren wir \displaystyle -a^2x zu/von \displaystyle -ax^2 damit wir etwas teilbar durch \displaystyle x+a erhalten,
\displaystyle \begin{align}
x^2+\frac{-ax^2+a^3}{x+a} &= x^2 + \frac{-ax^2-a^2x+a^2x+a^3}{x+a}\\[5pt] &= x^2 + \frac{-ax^2-a^2x}{x+a} + \frac{a^2x+a^3}{x+a}\\[5pt] &= x^2 + \frac{-ax(x+a)}{x+a} + \frac{a^2x+a^3}{x+a}\\[5pt] &= x^2 - ax + \frac{a^2x+a^3}{x+a}\,\textrm{.} \end{align} |
Im letzten Bruch haben wir \displaystyle x+a als Faktor im Zähler, und wir erhalten daher,
\displaystyle x^2 - ax + \frac{a^2x+a^3}{x+a} = x^2 - ax + \frac{a^2(x+a)}{x+a} = x^2-ax+a^2\,\textrm{.} |
Also erhalten wir
\displaystyle \frac{x^3+a^3}{x+a} = x^2-ax+a^2 |
Um zu testen ob wir richtig gerechnet haben, können wir beide Seiten mit \displaystyle x+a multiplizieren,
\displaystyle x^3+a^3 = (x^2-ax+a^2)(x+a)\,\textrm{.} |
Erweitern wir die rechte Seite, sollten wir die linke Seite erhalten,
\displaystyle \begin{align}
\text{Rechte Seite} &= (x^2-ax+a^2)(x+a)\\[5pt] &= x^3+ax^2-ax^2-a^2x+a^2x+a^3\\[5pt] &= x^3+a^3\\[5pt] &= \text{Linke Seite.} \end{align} |