Lösung 2.2:3b
Aus Online Mathematik Brückenkurs 2
If we are to succeed in simplifying the integral with a substitution, we must find an expression \displaystyle u = u(x) so that the integral can be written as
\displaystyle \int \left(\begin{matrix}
\text{something}\\ \text{in u} \end{matrix}\right)\cdot {u}'\,dx\,\textrm{.} |
As our integral is written,
\displaystyle \int\sin x\cos x\,dx |
we see that the second factor \displaystyle \cos x is a derivative of the first factor, \displaystyle \sin x. If \displaystyle u=\sin x, the integral can thus be written as
\displaystyle \int u\cdot u'\,dx |
and this makes \displaystyle u=\sin x an appropriate substitution,
\displaystyle \begin{align}
\int \sin x\cos x\,dx &= \left\{ \begin{align} u &= \sin x\\[5pt] du &= (\sin x)'\,dx = \cos x\,dx \end{align} \right\}\\[5pt] &= \int u\,du\\[5pt] &= \frac{1}{2}u^{2} + C\\[5pt] &= \frac{1}{2}\sin^2\!x + C\,\textrm{.} \end{align} |