|
|
|
|
|
 |
Antwort 1.3:1
Aus Online Mathematik Brückenkurs 2
a)
| Critical point: | \displaystyle x=0
|
| Inflexion point: | None
|
| Local min: | \displaystyle x=0
|
| Local max: | None
|
| Global min: | \displaystyle x=0
|
| Global max: | None
|
| Strictly incr.: | \displaystyle x\ge0
|
| Strictly decr.: | \displaystyle x\le0
|
|
b)
| Critical point: | \displaystyle x=-1, \displaystyle x=1
|
| Inflexion point: | None
|
| Local min: | \displaystyle x=-3, \displaystyle x=1
|
| Local max: | \displaystyle x=-1, \displaystyle x=2
|
| Global min: | \displaystyle x=-3
|
| Global max: | \displaystyle x=-1
|
| Strictly incr.: | \displaystyle [-3,-1], \displaystyle [1,2]
|
| Strictly decr.: | \displaystyle [-1,1]
|
|
c)
| Critical point:
| \displaystyle x=-2, \displaystyle x=-1, \displaystyle x=\tfrac{1}{2}
|
| Inflexion point: | \displaystyle x=-1
|
| Local min: | \displaystyle x=-2, \displaystyle x=2
|
| Local max: | \displaystyle x=-3, \displaystyle x=\tfrac{1}{2}
|
| Global min: | \displaystyle x=-2
|
| Global max: | \displaystyle x=-3
|
| Strictly incr.: | \displaystyle [-2,\tfrac{1}{2}]
|
| Strictly decr.: | \displaystyle [-3,-2], \displaystyle [\tfrac{1}{2},2]
|
|
d)
| Critical point:
| \displaystyle x=-\tfrac{5}{2}, \displaystyle x=\tfrac{1}{2}
|
| Inflexion point: | None
|
| Local min:
| \displaystyle x=-\tfrac{5}{2}, \displaystyle x=-\tfrac{1}{2}, \displaystyle x=2
|
| Local max:
| \displaystyle x=-3, \displaystyle x=-1, \displaystyle x=\tfrac{1}{2}
|
| Global min: | \displaystyle x=-\tfrac{5}{2}
|
| Global max: | \displaystyle x=-1
|
| Strictly incr.:
| \displaystyle [-\tfrac{5}{2},-1], \displaystyle [-\tfrac{1}{2},\tfrac{1}{2}]
|
| Strictly decr.:
| \displaystyle [-3,-\tfrac{5}{2}], \displaystyle [-1,-\tfrac{1}{2}], \displaystyle [\tfrac{1}{2},2]
|
|
|
 |
|
|
 |
|