Lösung 3.4:1c
Aus Online Mathematik Brückenkurs 2
If we focus on the leading term \displaystyle x^{3}, we need to complement it with in order to get an expression that is divisible by the denominator ,
\displaystyle \frac{x^{3}+a^{3}}{x+a}=\frac{x^{3}+ax^{2}-ax^{2}+a^{3}}{x+a}
With this form on the right-hand side, we can separate away the first two terms in the numerator and have left a polynomial quotient with
\displaystyle -ax^{2}+a^{3}
in the numerator:
\displaystyle \begin{align}
& \frac{x^{3}+ax^{2}-ax^{2}+a^{3}}{x+a}=\frac{x^{3}+ax^{2}}{x+a}+\frac{-ax^{2}+a^{3}}{x+a} \\
& =\frac{x^{2}\left( x+a \right)}{x+a}+\frac{-ax^{2}+a^{3}}{x+a} \\
& =x^{2}+\frac{-ax^{2}+a^{3}}{x+a} \\
\end{align}
When we treat the new quotient, we add and take away
\displaystyle -a^{2}x
to/from
\displaystyle -ax^{2}
in order to get something divisible by
\displaystyle x+a
\displaystyle \begin{align} & x^{2}+\frac{-ax^{2}+a^{3}}{x+a}=x^{2}+\frac{-ax^{2}-a^{2}x+a^{2}x+a^{3}}{x+a} \\ & =x^{2}+\frac{-ax^{2}-a^{2}x}{x+a}+\frac{a^{2}x+a^{3}}{x+a} \\ & =x^{2}+\frac{-ax\left( x+a \right)}{x+a}+\frac{a^{2}x+a^{3}}{x+a} \\ & =x^{2}-ax+\frac{a^{2}x+a^{3}}{x+a} \\ \end{align}
In the last quotient, the numerator has
\displaystyle x+a
as a factor, and we obtain a perfect division:
\displaystyle x^{2}-ax+\frac{a^{2}x+a^{3}}{x+a}=x^{2}-ax+\frac{a^{2}\left( x+a \right)}{x+a}=x^{2}-ax+a^{2}
If we have calculated correctly, we should have
\displaystyle \frac{x^{3}+a^{3}}{x+a}=x^{2}-ax+a^{2}
and one way to check the answer is to multiply both sides by
\displaystyle x+a,
\displaystyle x^{3}+a^{3}=\left( x^{2}-ax+a^{2} \right)\left( x+a \right)
Then, expand the right-hand side and then we should get what is on the left-hand side:
\displaystyle \begin{align}
& \text{RHS}=\left( x^{2}-ax+a^{2} \right)\left( x+a \right)=x^{3}+ax^{2}-ax^{2}-a^{2}x+a^{2}x+a^{3} \\
& =x^{3}+a^{3}=~~\text{LHS} \\
\end{align}