Lösung 2.2:3f
Aus Online Mathematik Brückenkurs 2
Let's rewrite the integral somewhat:
\displaystyle 2\sin \sqrt{x}\centerdot \frac{1}{2\sqrt{x}}
Here, we see that the factor on the right,
\displaystyle \frac{1}{2\sqrt{x}}
is the derivative of the expression
\displaystyle \sqrt{x}, which appears in the factor on the left,
\displaystyle 2\sin \sqrt{x}
With the substitution
\displaystyle u=\sqrt{x}, the integrand can therefore be written as
\displaystyle 2\sin u\centerdot {u}'
and the integral becomes
\displaystyle \begin{align}
& \int{\frac{\sin \sqrt{x}}{\sqrt{x}}}\,dx=\left\{ \begin{matrix}
u=\sqrt{x} \\
du=\left( \sqrt{x} \right)^{\prime }\,dx=\frac{1}{2\sqrt{x}}\,dx \\
\end{matrix}\, \right\} \\
& =2\int{\sin u\,du} \\
& =-2\cos u+C \\
& =-2\cos \sqrt{x}+C \\
\end{align}