Lösung 2.2:3e
Aus Online Mathematik Brückenkurs 2
If we differentiate the denominator in the integrand
\displaystyle 3x=\frac{3}{2}\centerdot 2x=\frac{3}{2}\left( x^{2}+1 \right)^{\prime }
we obtain almost the same expression as in the numerator; there is a constant
\displaystyle \text{2}
which is different. We therefore rewrite the numerator as
\displaystyle 3x=\frac{3}{2}\centerdot 2x=\frac{3}{2}\centerdot \left( x^{2}+1 \right)^{\prime },
so the integral can be written as
\displaystyle \int{\frac{\frac{3}{2}}{x^{2}+1}}\centerdot \left( x^{2}+1 \right)^{\prime }\,dx,
and we see that the substitution \displaystyle u=x^{2}+1 can be used to simplify the integral:
\displaystyle \begin{align}
& \int{\frac{3x}{x^{2}+1}}\,dx=\left\{ \begin{matrix}
u=x^{2}+1 \\
du=\left( x^{2}+1 \right)^{\prime }\,dx=2x\,dx \\
\end{matrix} \right\} \\
& =\frac{3}{2}\int{\frac{\,du}{u}}=\frac{3}{2}\ln \left| u \right|+C \\
& =\frac{3}{2}\ln \left| x^{2}+1 \right|+C \\
& =\frac{3}{2}\ln \left( x^{2}+1 \right)+C \\
\end{align}
In the last step, we take away the absolute sign around the argument in
\displaystyle \ln , because
\displaystyle x^{2}+1
is always greater than or equal to
\displaystyle \text{1}.