Lösung 2.2:1c

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

With the given variable substitution, \displaystyle u=x^{3} we obtain


\displaystyle du=\left( x^{3} \right)^{\prime }\,dx=3x^{2}\,dx


and because the integral contains \displaystyle x^{2} as a factor, we can bundle it together with \displaystyle dx and replace the combination with \displaystyle \frac{1}{3}\,du,


\displaystyle \int{e^{x^{3}}x^{2}\,dx=\left\{ u=x^{3} \right\}}=\int{e^{u}}\frac{1}{3}\,du=\frac{1}{3}e^{u}+C


Thus, the answer is


\displaystyle \int{e^{x^{3}}x^{2}\,dx=}\frac{1}{3}e^{x^{3}}+C


where \displaystyle C is an arbitrary constant.