1.3 Übungen

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche
       Theorie          Übungen      

Übung 1.3:1

Bestimme alle stationären Punkte, die Sattelpunkte und die lokalen und globalen Extrempunkte der Funktion. Bestimme auch, in welchem Intervall die Funktion monoton steigend und fallend ist.

a)

[Image]

b)

[Image]

c)

[Image]

d)

[Image]

Übung 1.3:2

Bestimme alle lokalen Extrempunkte und zeichne den Graph von

a) \displaystyle f(x)= x^2 -2x+1 b) \displaystyle f(x)=2+3x-x^2
c) \displaystyle f(x)= 2x^3+3x^2-12x+1 d) \displaystyle f(x)=x^3-9x^2+30x-15

Übung 1.3:3

Bestimme alle lokalen Extrempunkte und zeichne den Graph von

a) \displaystyle f(x)=-x^4+8x^3-18x^2 b) \displaystyle f(x)=e^{-3x} +5x
c) \displaystyle f(x)= x\ln x -9 d) \displaystyle f(x)=\displaystyle\frac{1+x^2}{1+x^4}
e) \displaystyle f(x)=(x^2-x-1)e^x wenn \displaystyle -3\le x\le 3

Übung 1.3:4

Wo muss im ersten Quadrant und auf der Kurve \displaystyle y=1-x^2 der Punkt \displaystyle P liegen, sodass das Rechteck in der Figur die größtmögliche Fläche annimmt.

[Image]

Übung 1.3:5

Aus einem 30 cm langen Metallblech baut man einen Kanal. Die Kanten werden parallel mit der Längsseite des Bleches aufgebogen - siehe Zeichnung. Für welchen Winkel \displaystyle \alpha kann der Kanal so viel Wasser wie möglich enthalten?

[Image]

Übung 1.3:6

Eine Tasse hat die Form eines Zylinders. Welche Abmessungen soll die Tasse haben, sodass sie das größtmögliche Volumen V hat?

Übung 1.3:7

Ein Kreissektor wird von einer runden Scheibe ausgeschnitten. Die Scheibe die übrig bleibt wird zu einem Kegel geformt. Welchen Winkel soll der Kreissektor haben, damit der Kegel das größtmögliche Volumen bekommt?