Lösung 1.1:1a
Aus Online Mathematik Brückenkurs 2
The derivative \displaystyle f^{\,\prime}(-5) gives the function's instantaneous rate of change at the point \displaystyle x=-5, i.e. it is a measure of how much the function's value changes in the vicinity of \displaystyle x=-5\,.
In the graph of the function, this derivative is equal to the slope of the tangent to the graph of the function at the point \displaystyle x=-5\,.
|
The red tangent line has the equation y = kx + m, where k = f'(-5). |
Because the tangent is sloping upwards, it has a positive gradient and therefore \displaystyle f^{\,\prime}(-5) > 0\,.
At the point \displaystyle x=1, the tangent slopes downwards and this means that \displaystyle f^{\,\prime}(1) < 0\,.
|
The red tangent line has the equation y = kx + m, where k = f'(1). |