Lösung 2.2:3b
Aus Online Mathematik Brückenkurs 2
If we to succeed in simplifying the integral with a substitution, we must find an expression \displaystyle u=u\left( x \right) so that the integral can be written as
\displaystyle \int{\left( \begin{matrix}
\text{something} \\
\text{in}\quad u \\
\end{matrix} \right)}\centerdot {u}'\,dx.
As our integral is written,
\displaystyle \int{\sin x\cos x\,dx}
we see that the second factor
\displaystyle \cos x
is a derivative of the first factor,
\displaystyle \sin x. If
\displaystyle u=\text{sin }x, the integral can thus be written as
\displaystyle \int{u\centerdot {u}'\,dx}
and this makes \displaystyle u=\text{sin }x an appropriate substitution,
\displaystyle \begin{align}
& \int{\sin x\cos x\,dx}=\left\{ \begin{matrix}
u=\text{sin }x \\
du=\left( \sin x \right)^{\prime }\,dx=\cos x\,dx \\
\end{matrix} \right\} \\
& =\int{u\,du=\frac{1}{2}u^{2}} \\
& =\frac{1}{2}\sin ^{2}x+C \\
\end{align}