Lösung 1.2:4b
Aus Online Mathematik Brückenkurs 2
K (Solution 1.2:4b moved to Lösung 1.2:4b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | Wir berechnen zuerst die erste Ableitung mit der Fakrorregel, | |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
Zeile 7: | Zeile 7: | ||
\end{align}</math>}} | \end{align}</math>}} | ||
- | + | Wir leiten leiten den zweiten Term, Term für Term mit der Kettenregel ab, | |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
Zeile 16: | Zeile 16: | ||
\end{align}</math>}} | \end{align}</math>}} | ||
- | + | Also haben wir | |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
Zeile 24: | Zeile 24: | ||
\end{align}</math>}} | \end{align}</math>}} | ||
- | + | Die zweite Ableitung ist | |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} |
Version vom 12:37, 19. Apr. 2009
Wir berechnen zuerst die erste Ableitung mit der Fakrorregel,
\displaystyle \begin{align}
\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] &= (x)'\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\\[5pt] &= 1\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\,\textrm{.} \end{align} |
Wir leiten leiten den zweiten Term, Term für Term mit der Kettenregel ab,
\displaystyle \begin{align}
(\sin\ln x + \cos\ln x)' &= (\sin\ln x)' + (\cos\ln x)'\\[5pt] &= \cos\ln x\cdot (\ln x)' - \sin\ln x\cdot (\ln x)'\\[5pt] &= \cos\ln x\cdot\frac{1}{x} - \sin\ln x\cdot\frac{1}{x}\,\textrm{.} \end{align} |
Also haben wir
\displaystyle \begin{align}
\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] &= \sin \ln x + \cos \ln x + \cos \ln x - \sin \ln x\\[5pt] &= 2\cos \ln x\,\textrm{.} \end{align} |
Die zweite Ableitung ist
\displaystyle \begin{align}
\frac{d}{dx}\,2\cos\ln x &= -2\sin\ln x\cdot (\ln x)'\\[5pt] &= -2\sin\ln x\cdot \frac{1}{x}\\[5pt] &= -\frac{2\sin\ln x}{x}\,\textrm{.} \end{align} |