3.2 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Robot: Automated text replacement  (-Answer +Antwort)) | K  (Robot: Automated text replacement  (-Solution +Lösung)) | ||
| Zeile 21: | Zeile 21: | ||
| |width="50%"| <math>z-\overline{w}+u</math> | |width="50%"| <math>z-\overline{w}+u</math> | ||
| |} | |} | ||
| - | </div>{{#NAVCONTENT:Antwort|Antwort 3.2:1| | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.2:1|Lösung a|Lösung 3.2:1a|Lösung b|Lösung 3.2:1b|Lösung c|Lösung 3.2:1c|Lösung d|Lösung 3.2:1d}} | 
| ===Übung 3.2:2=== | ===Übung 3.2:2=== | ||
| Zeile 42: | Zeile 42: | ||
| |width="50%"| <math>2<|z-i|\le3</math> | |width="50%"| <math>2<|z-i|\le3</math> | ||
| |} | |} | ||
| - | </div>{{#NAVCONTENT:Antwort|Antwort 3.2:2| | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.2:2|Lösung a|Lösung 3.2:2a|Lösung b|Lösung 3.2:2b|Lösung c|Lösung 3.2:2c|Lösung d|Lösung 3.2:2d|Lösung e|Lösung 3.2:2e|Lösung f|Lösung 3.2:2f}} | 
| ===Übung 3.2:3=== | ===Übung 3.2:3=== | ||
| <div class="ovning"> | <div class="ovning"> | ||
| The complex numbers <math>\,1+i\,</math>, <math>\,3+2i\,</math> and <math>\,3i\,</math> constitute three corners of a square in the complex number plane. Determine the square's fourth corner. | The complex numbers <math>\,1+i\,</math>, <math>\,3+2i\,</math> and <math>\,3i\,</math> constitute three corners of a square in the complex number plane. Determine the square's fourth corner. | ||
| - | </div>{{#NAVCONTENT:Antwort|Antwort 3.2:3| | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.2:3|Lösung|Lösung 3.2:3}} | 
| ===Übung 3.2:4=== | ===Übung 3.2:4=== | ||
| Zeile 63: | Zeile 63: | ||
| |width="50%"| <math>\displaystyle\frac{3-4i}{3+2i}</math> | |width="50%"| <math>\displaystyle\frac{3-4i}{3+2i}</math> | ||
| |} | |} | ||
| - | </div>{{#NAVCONTENT:Antwort|Antwort 3.2:4| | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.2:4|Lösung a|Lösung 3.2:4a|Lösung b|Lösung 3.2:4b|Lösung c|Lösung 3.2:4c|Lösung d|Lösung 3.2:4d}} | 
| ===Übung 3.2:5=== | ===Übung 3.2:5=== | ||
| Zeile 79: | Zeile 79: | ||
| |width="50%"| <math>\displaystyle\frac{i}{1+i}</math> | |width="50%"| <math>\displaystyle\frac{i}{1+i}</math> | ||
| |} | |} | ||
| - | </div>{{#NAVCONTENT:Antwort|Antwort 3.2:5| | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.2:5|Lösung a|Lösung 3.2:5a|Lösung b|Lösung 3.2:5b|Lösung c|Lösung 3.2:5c|Lösung d|Lösung 3.2:5d}} | 
| ===Übung 3.2:6=== | ===Übung 3.2:6=== | ||
| Zeile 100: | |||
| |width="50%"| <math>\displaystyle\frac{(2+2i)(1+i\sqrt{3}\,)}{3i(\sqrt{12} -2i)}</math> | |width="50%"| <math>\displaystyle\frac{(2+2i)(1+i\sqrt{3}\,)}{3i(\sqrt{12} -2i)}</math> | ||
| |} | |} | ||
| - | </div>{{#NAVCONTENT:Antwort|Antwort 3.2:6| | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.2:6|Lösung a|Lösung 3.2:6a|Lösung b|Lösung 3.2:6b|Lösung c|Lösung 3.2:6c|Lösung d|Lösung 3.2:6d|Lösung e|Lösung 3.2:6e|Lösung f|Lösung 3.2:6f}} | 
Version vom 13:34, 10. Mär. 2009
| Theorie | Übungen | 
Übung 3.2:1
Given the complex numbers \displaystyle \,z=2+i\,, \displaystyle \,w=2+3i\, and \displaystyle \,u=-1-2i\,. Mark the following numbers on the complex plane:
| a) | \displaystyle z\, and \displaystyle \,w | b) | \displaystyle z+u\, and \displaystyle \,z-u | 
| c) | \displaystyle 2z+w | d) | \displaystyle z-\overline{w}+u | 
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Übung 3.2:2
Draw the following sets in the complex number plane
| a) | \displaystyle 0\le \mbox{Im}\, z \le 3 | b) | \displaystyle 0 \le \mbox{Re} \, z \le \mbox{Im}\, z \le 3 | 
| c) | \displaystyle |z|=2 | d) | \displaystyle |z-1-i|=3 | 
| e) | \displaystyle \mbox{Re}\, z = i + \bar z | f) | \displaystyle 2<|z-i|\le3 | 
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Lösung f
Übung 3.2:3
The complex numbers \displaystyle \,1+i\,, \displaystyle \,3+2i\, and \displaystyle \,3i\, constitute three corners of a square in the complex number plane. Determine the square's fourth corner.
Antwort
Lösung
Übung 3.2:4
Determine the magnitude of
| a) | \displaystyle 3+4i | b) | \displaystyle (2-i) + (5+3i) | 
| c) | \displaystyle (3-4i)(3+2i) | d) | \displaystyle \displaystyle\frac{3-4i}{3+2i} | 
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Übung 3.2:5
Determine the argument of
| a) | \displaystyle -10 | b) | \displaystyle -2+2i | 
| c) | \displaystyle (\sqrt{3} +i)(1-i) | d) | \displaystyle \displaystyle\frac{i}{1+i} | 
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Übung 3.2:6
Write the following numbers in polar form
| a) | \displaystyle 3 | b) | \displaystyle -11i | 
| c) | \displaystyle -4-4i | d) | \displaystyle \sqrt{10} + \sqrt{30}\,i | 
| e) | \displaystyle \displaystyle\frac{1+i\sqrt{3}}{1+i} | f) | \displaystyle \displaystyle\frac{(2+2i)(1+i\sqrt{3}\,)}{3i(\sqrt{12} -2i)} | 
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Lösung f
 
		   Laden...
  Laden...