Lösung 3.3:1b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 5: | Zeile 5: | ||
| Thus, | Thus, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\frac{1}{2}+i\frac{\sqrt{3}}{2} = 1\cdot \Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)</math>}} | 
| and de Moivre's formula gives | and de Moivre's formula gives | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| \Bigl(\frac{1}{2}+i\frac{\sqrt{3}}{2}\Bigr)^{12} | \Bigl(\frac{1}{2}+i\frac{\sqrt{3}}{2}\Bigr)^{12} | ||
| &= 1^{12}\cdot\Bigl(\cos\Bigl(12\cdot\frac{\pi}{3}\Bigr) + i\sin\Bigl(12\cdot\frac{\pi}{3}\Bigr)\Bigr)\\[5pt]  | &= 1^{12}\cdot\Bigl(\cos\Bigl(12\cdot\frac{\pi}{3}\Bigr) + i\sin\Bigl(12\cdot\frac{\pi}{3}\Bigr)\Bigr)\\[5pt]  | ||
Version vom 13:10, 10. Mär. 2009
First, we write the number \displaystyle \frac{1}{2}+i\frac{\sqrt{3}}{2} in polar form.
 
 
Thus,
| \displaystyle \frac{1}{2}+i\frac{\sqrt{3}}{2} = 1\cdot \Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr) | 
and de Moivre's formula gives
| \displaystyle \begin{align} \Bigl(\frac{1}{2}+i\frac{\sqrt{3}}{2}\Bigr)^{12} &= 1^{12}\cdot\Bigl(\cos\Bigl(12\cdot\frac{\pi}{3}\Bigr) + i\sin\Bigl(12\cdot\frac{\pi}{3}\Bigr)\Bigr)\\[5pt] &= 1\cdot (\cos 4\pi + i\sin 4\pi)\\[5pt] &= 1\cdot (1+i\cdot 0)\\[5pt] &= 1\,\textrm{.} \end{align} | 
 
		  