Lösung 2.2:3f

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Let's rewrite the integral somewhat,
Let's rewrite the integral somewhat,
-
{{Displayed math||<math>2\sin\sqrt{x}\cdot\frac{1}{2\sqrt{x}}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>2\sin\sqrt{x}\cdot\frac{1}{2\sqrt{x}}\,\textrm{.}</math>}}
Here, we see that the factor on the right, <math>1/2\sqrt{x}</math>, is the derivative of the expression <math>\sqrt{x}</math>, which appears in the factor on the left, <math>2\sin \sqrt{x}\,</math>. With the substitution <math>u=\sqrt{x}</math>, the integrand can therefore be written as
Here, we see that the factor on the right, <math>1/2\sqrt{x}</math>, is the derivative of the expression <math>\sqrt{x}</math>, which appears in the factor on the left, <math>2\sin \sqrt{x}\,</math>. With the substitution <math>u=\sqrt{x}</math>, the integrand can therefore be written as
-
{{Displayed math||<math>2\sin u\cdot u'</math>}}
+
{{Abgesetzte Formel||<math>2\sin u\cdot u'</math>}}
and the integral becomes
and the integral becomes
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\int \frac{\sin \sqrt{x}}{\sqrt{x}}\,dx
\int \frac{\sin \sqrt{x}}{\sqrt{x}}\,dx
&= \left\{ \begin{align}
&= \left\{ \begin{align}

Version vom 13:02, 10. Mär. 2009

Let's rewrite the integral somewhat,

\displaystyle 2\sin\sqrt{x}\cdot\frac{1}{2\sqrt{x}}\,\textrm{.}

Here, we see that the factor on the right, \displaystyle 1/2\sqrt{x}, is the derivative of the expression \displaystyle \sqrt{x}, which appears in the factor on the left, \displaystyle 2\sin \sqrt{x}\,. With the substitution \displaystyle u=\sqrt{x}, the integrand can therefore be written as

\displaystyle 2\sin u\cdot u'

and the integral becomes

\displaystyle \begin{align}

\int \frac{\sin \sqrt{x}}{\sqrt{x}}\,dx &= \left\{ \begin{align} u &= \sqrt{x}\\[5pt] du &= (\sqrt{x}\,)'\,dx = \frac{1}{2\sqrt{x}}\,dx \end{align}\, \right\}\\[5pt] &= 2\int \sin u\,du\\[5pt] &= -2\cos u+C\\[5pt] &= -2\cos\sqrt{x} + C\,\textrm{.} \end{align}