Lösung 2.2:3b
Aus Online Mathematik Brückenkurs 2
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we are to succeed in simplifying the integral with a substitution, we must find an expression <math>u = u(x)</math> so that the integral can be written as | If we are to succeed in simplifying the integral with a substitution, we must find an expression <math>u = u(x)</math> so that the integral can be written as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int \left(\begin{matrix} |
\text{something}\\ | \text{something}\\ | ||
\text{in u} | \text{in u} | ||
Zeile 8: | Zeile 8: | ||
As our integral is written, | As our integral is written, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int\sin x\cos x\,dx</math>}} |
we see that the second factor <math>\cos x</math> is a derivative of the first factor, <math>\sin x</math>. If <math>u=\sin x</math>, the integral can thus be written as | we see that the second factor <math>\cos x</math> is a derivative of the first factor, <math>\sin x</math>. If <math>u=\sin x</math>, the integral can thus be written as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int u\cdot u'\,dx</math>}} |
and this makes <math>u=\sin x</math> an appropriate substitution, | and this makes <math>u=\sin x</math> an appropriate substitution, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\int \sin x\cos x\,dx | \int \sin x\cos x\,dx | ||
&= \left\{ \begin{align} | &= \left\{ \begin{align} |
Version vom 13:01, 10. Mär. 2009
If we are to succeed in simplifying the integral with a substitution, we must find an expression \displaystyle u = u(x) so that the integral can be written as
\displaystyle \int \left(\begin{matrix}
\text{something}\\ \text{in u} \end{matrix}\right)\cdot {u}'\,dx\,\textrm{.} |
As our integral is written,
\displaystyle \int\sin x\cos x\,dx |
we see that the second factor \displaystyle \cos x is a derivative of the first factor, \displaystyle \sin x. If \displaystyle u=\sin x, the integral can thus be written as
\displaystyle \int u\cdot u'\,dx |
and this makes \displaystyle u=\sin x an appropriate substitution,
\displaystyle \begin{align}
\int \sin x\cos x\,dx &= \left\{ \begin{align} u &= \sin x\\[5pt] du &= (\sin x)'\,dx = \cos x\,dx \end{align} \right\}\\[5pt] &= \int u\,du\\[5pt] &= \frac{1}{2}u^{2} + C\\[5pt] &= \frac{1}{2}\sin^2\!x + C\,\textrm{.} \end{align} |