Lösung 2.2:1c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
With the given variable substitution, <math>u=x^3</math>, we obtain
With the given variable substitution, <math>u=x^3</math>, we obtain
-
{{Displayed math||<math>du = \bigl(x^3\bigr)'\,dx = 3x^2\,dx</math>}}
+
{{Abgesetzte Formel||<math>du = \bigl(x^3\bigr)'\,dx = 3x^2\,dx</math>}}
and because the integral contains <math>x^2</math> as a factor, we can bundle it together with <math>dx</math> and replace the combination with <math>\tfrac{1}{3}\,du</math>,
and because the integral contains <math>x^2</math> as a factor, we can bundle it together with <math>dx</math> and replace the combination with <math>\tfrac{1}{3}\,du</math>,
-
{{Displayed math||<math>\int e^{x^3}x^2\,dx = \bigl\{\,u=x^3\,\bigr\} = \int e^u\tfrac{1}{3}\,du = \frac{1}{3}e^u + C\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\int e^{x^3}x^2\,dx = \bigl\{\,u=x^3\,\bigr\} = \int e^u\tfrac{1}{3}\,du = \frac{1}{3}e^u + C\,\textrm{.}</math>}}
Thus, the answer is
Thus, the answer is
-
{{Displayed math||<math>\int e^{x^3}x^2\,dx = \frac{1}{3}e^{x^3} + C\,,</math>}}
+
{{Abgesetzte Formel||<math>\int e^{x^3}x^2\,dx = \frac{1}{3}e^{x^3} + C\,,</math>}}
where <math>C</math> is an arbitrary constant.
where <math>C</math> is an arbitrary constant.

Version vom 13:00, 10. Mär. 2009

With the given variable substitution, \displaystyle u=x^3, we obtain

\displaystyle du = \bigl(x^3\bigr)'\,dx = 3x^2\,dx

and because the integral contains \displaystyle x^2 as a factor, we can bundle it together with \displaystyle dx and replace the combination with \displaystyle \tfrac{1}{3}\,du,

\displaystyle \int e^{x^3}x^2\,dx = \bigl\{\,u=x^3\,\bigr\} = \int e^u\tfrac{1}{3}\,du = \frac{1}{3}e^u + C\,\textrm{.}

Thus, the answer is

\displaystyle \int e^{x^3}x^2\,dx = \frac{1}{3}e^{x^3} + C\,,

where \displaystyle C is an arbitrary constant.