Lösung 2.1:5a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 2: Zeile 2:
<math>\sqrt{x+9}+\sqrt{x}</math> then the formula for the difference of two squares gives that denominator's root is squared away,
<math>\sqrt{x+9}+\sqrt{x}</math> then the formula for the difference of two squares gives that denominator's root is squared away,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{1}{\sqrt{x+9}-\sqrt{x}}
\frac{1}{\sqrt{x+9}-\sqrt{x}}
&= \frac{1}{\sqrt{x+9}-\sqrt{x}}\cdot\frac{\sqrt{x+9}+\sqrt{x}}{\sqrt{x+9}+\sqrt{x}}\\[5pt]
&= \frac{1}{\sqrt{x+9}-\sqrt{x}}\cdot\frac{\sqrt{x+9}+\sqrt{x}}{\sqrt{x+9}+\sqrt{x}}\\[5pt]
Zeile 12: Zeile 12:
Thus,
Thus,
-
{{Displayed math||<math>\int \frac{dx}{\sqrt{x+9}-\sqrt{x}} = \frac{1}{9}\int\bigl(\sqrt{x+9}+\sqrt{x}\,\bigr)\,dx\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\int \frac{dx}{\sqrt{x+9}-\sqrt{x}} = \frac{1}{9}\int\bigl(\sqrt{x+9}+\sqrt{x}\,\bigr)\,dx\,\textrm{.}</math>}}
If we write the square roots in power form,
If we write the square roots in power form,
-
{{Displayed math||<math>\frac{1}{9}\int\bigl((x+9)^{1/2} + x^{1/2}\bigr)\,dx\,,</math>}}
+
{{Abgesetzte Formel||<math>\frac{1}{9}\int\bigl((x+9)^{1/2} + x^{1/2}\bigr)\,dx\,,</math>}}
we see that we have a standard integral and can write down the primitive functions directly,
we see that we have a standard integral and can write down the primitive functions directly,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{1}{9}\int\bigl((x+9)^{1/2} + x^{1/2}\bigr)\,dx
\frac{1}{9}\int\bigl((x+9)^{1/2} + x^{1/2}\bigr)\,dx
&= \frac{1}{9}\biggl(\frac{(x+9)^{1/2+1}}{\tfrac{1}{2}+1} + \frac{x^{1/2+1}}{\tfrac{1}{2}+1} \biggr)+C\\[5pt]
&= \frac{1}{9}\biggl(\frac{(x+9)^{1/2+1}}{\tfrac{1}{2}+1} + \frac{x^{1/2+1}}{\tfrac{1}{2}+1} \biggr)+C\\[5pt]
Zeile 32: Zeile 32:
This can also be written with square roots as
This can also be written with square roots as
-
{{Displayed math||<math>\frac{2}{27}(x+9)\sqrt{x+9} + \frac{2}{27}x\sqrt{x} + C\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{2}{27}(x+9)\sqrt{x+9} + \frac{2}{27}x\sqrt{x} + C\,\textrm{.}</math>}}
Note: To be completely certain that we have done everything correctly, we differentiate the answer and see if we get back the integrand,
Note: To be completely certain that we have done everything correctly, we differentiate the answer and see if we get back the integrand,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{d}{dx}\Bigl( \frac{2}{27}(x+9)^{3/2} + \frac{2}{27}x^{3/2} + C \Bigr)
\frac{d}{dx}\Bigl( \frac{2}{27}(x+9)^{3/2} + \frac{2}{27}x^{3/2} + C \Bigr)
&= \frac{2}{27}\cdot \frac{3}{2}(x+9)^{3/2-1} + \frac{2}{27}\cdot\frac{3}{2} x^{3/2-1} + 0\\[5pt]
&= \frac{2}{27}\cdot \frac{3}{2}(x+9)^{3/2-1} + \frac{2}{27}\cdot\frac{3}{2} x^{3/2-1} + 0\\[5pt]
&= \frac{1}{9}(x+9)^{1/2} + \frac{1}{9}x^{1/2}\,\textrm{.}
&= \frac{1}{9}(x+9)^{1/2} + \frac{1}{9}x^{1/2}\,\textrm{.}
\end{align}</math>}}
\end{align}</math>}}

Version vom 13:00, 10. Mär. 2009

If we multiply top and bottom of the fraction by the conjugate expression \displaystyle \sqrt{x+9}+\sqrt{x} then the formula for the difference of two squares gives that denominator's root is squared away,

\displaystyle \begin{align}

\frac{1}{\sqrt{x+9}-\sqrt{x}} &= \frac{1}{\sqrt{x+9}-\sqrt{x}}\cdot\frac{\sqrt{x+9}+\sqrt{x}}{\sqrt{x+9}+\sqrt{x}}\\[5pt] &= \frac{\sqrt{x+9}+\sqrt{x}}{\bigl(\sqrt{x+9}\,\bigr)^2 - \bigl(\sqrt{x}\,\bigr)^2}\\[5pt] &= \frac{\sqrt{x+9}+\sqrt{x}}{x+9-x}\\[5pt] &= \frac{\sqrt{x+9}+\sqrt{x}}{9}\,\textrm{.} \end{align}

Thus,

\displaystyle \int \frac{dx}{\sqrt{x+9}-\sqrt{x}} = \frac{1}{9}\int\bigl(\sqrt{x+9}+\sqrt{x}\,\bigr)\,dx\,\textrm{.}

If we write the square roots in power form,

\displaystyle \frac{1}{9}\int\bigl((x+9)^{1/2} + x^{1/2}\bigr)\,dx\,,

we see that we have a standard integral and can write down the primitive functions directly,

\displaystyle \begin{align}

\frac{1}{9}\int\bigl((x+9)^{1/2} + x^{1/2}\bigr)\,dx &= \frac{1}{9}\biggl(\frac{(x+9)^{1/2+1}}{\tfrac{1}{2}+1} + \frac{x^{1/2+1}}{\tfrac{1}{2}+1} \biggr)+C\\[5pt] &= \frac{1}{9}\Bigl(\frac{(x+9)^{3/2}}{3/2} + \frac{x^{3/2}}{3/2} \Bigr)+C\\[5pt] &= \frac{1}{9}\Bigl(\frac{2}{3}(x+9)^{3/2} + \frac{2}{3}x^{3/2} \Bigr)+C\\[5pt] &= \frac{2}{27}(x+9)^{3/2} + \frac{2}{27}x^{3/2}+C\,, \end{align}

where C is an arbitrary constant.

This can also be written with square roots as

\displaystyle \frac{2}{27}(x+9)\sqrt{x+9} + \frac{2}{27}x\sqrt{x} + C\,\textrm{.}


Note: To be completely certain that we have done everything correctly, we differentiate the answer and see if we get back the integrand,

\displaystyle \begin{align}

\frac{d}{dx}\Bigl( \frac{2}{27}(x+9)^{3/2} + \frac{2}{27}x^{3/2} + C \Bigr) &= \frac{2}{27}\cdot \frac{3}{2}(x+9)^{3/2-1} + \frac{2}{27}\cdot\frac{3}{2} x^{3/2-1} + 0\\[5pt] &= \frac{1}{9}(x+9)^{1/2} + \frac{1}{9}x^{1/2}\,\textrm{.} \end{align}