Lösung 2.2:3f
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | Let's rewrite the integral somewhat | + | Let's rewrite the integral somewhat, |
+ | {{Displayed math||<math>2\sin\sqrt{x}\cdot\frac{1}{2\sqrt{x}}\,\textrm{.}</math>}} | ||
- | + | Here, we see that the factor on the right, <math>1/2\sqrt{x}</math>, is the derivative of the expression <math>\sqrt{x}</math>, which appears in the factor on the left, <math>2\sin \sqrt{x}\,</math>. With the substitution <math>u=\sqrt{x}</math>, the integrand can therefore be written as | |
- | + | ||
- | + | ||
- | Here, we see that the factor on the right, | + | |
- | <math> | + | |
- | is the derivative of the expression | + | |
- | <math>\sqrt{x}</math>, which appears in the factor on the left, | + | |
- | <math>2\sin \sqrt{x}</math> | + | |
- | With the substitution | + | |
- | <math>u=\sqrt{x}</math>, the integrand can therefore be written as | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>2\sin u\cdot u'</math>}} | ||
and the integral becomes | and the integral becomes | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \int \frac{\sin \sqrt{x}}{\sqrt{x}}\,dx |
- | + | &= \left\{ \begin{align} | |
- | u=\sqrt{x} | + | u &= \sqrt{x}\\[5pt] |
- | du= | + | du &= (\sqrt{x}\,)'\,dx = \frac{1}{2\sqrt{x}}\,dx |
- | \end{ | + | \end{align}\, \right\}\\[5pt] |
- | & =2\int | + | &= 2\int \sin u\,du\\[5pt] |
- | & =-2\cos u+C \\ | + | &= -2\cos u+C\\[5pt] |
- | & =-2\cos \sqrt{x}+C \\ | + | &= -2\cos\sqrt{x} + C\,\textrm{.} |
- | \end{align}</math> | + | \end{align}</math>}} |
Version vom 15:43, 28. Okt. 2008
Let's rewrite the integral somewhat,
\displaystyle 2\sin\sqrt{x}\cdot\frac{1}{2\sqrt{x}}\,\textrm{.} |
Here, we see that the factor on the right, \displaystyle 1/2\sqrt{x}, is the derivative of the expression \displaystyle \sqrt{x}, which appears in the factor on the left, \displaystyle 2\sin \sqrt{x}\,. With the substitution \displaystyle u=\sqrt{x}, the integrand can therefore be written as
\displaystyle 2\sin u\cdot u' |
and the integral becomes
\displaystyle \begin{align}
\int \frac{\sin \sqrt{x}}{\sqrt{x}}\,dx &= \left\{ \begin{align} u &= \sqrt{x}\\[5pt] du &= (\sqrt{x}\,)'\,dx = \frac{1}{2\sqrt{x}}\,dx \end{align}\, \right\}\\[5pt] &= 2\int \sin u\,du\\[5pt] &= -2\cos u+C\\[5pt] &= -2\cos\sqrt{x} + C\,\textrm{.} \end{align} |